Пусть теперь
немаксимальна в . Тогда, по лемме, содержится в качестве максимальной подгруппы в некоторой -абнормальной максимальной подгруппе группы . Тогда группа представима в виде , где --- -группа. Предположим, что . Тогда любая -нормальная максимальная подгруппа группы имеет вид , где --- некоторая максимальная подгруппа из , и, следовательно, по теореме , принадлежит формации . Получили, что группа --- минимальная несверхразрешимая группа. Предположим, что . Тогда, по теореме Машке , . Ввиду следующего равенства получаем противоречие с тем, что . Итак, --- группа типа 1) из данной теоремы. Если же , то группа имеет вид и . Так как максимальна в , то . Рассмотрим подгруппу . Если , то -субнормальна в . Учитывая, что дисперсивна по Оре, по теореме , получаем, что . Противоречие. Каждая собственная подгруппа из будет немаксимальна в и, по лемме, -субнормальна в . Если максимальна в , то --- минимальная несверхразрешимая группа. В этом случае --- группа типа 4) из данной теоремы. Если предположить, что не максимальна в , то она содержится в некоторой -абнормальной максимальной подгруппе из . Получили, что и . Это значит, что . Противоречие с тем, что --- максимальная подгруппа в .2. Рассмотрим случай
, где , и --- различные простые числа. Согласно лемме, в группе либо все -абнормальные максимальные подгруппы сверхразрешимы, либо являются минимальными несверхразрешимыми группами, у которых нормальная силовская подгруппа является минимальной нормальной подгруппой. Рассмотрим эти два случая.2.1. Предположим, что в
имеется несверхразрешимая -абнормальная максимальная подгруппа . По лемме, является минимальной несверхразрешимой группой, у которой нормальная силовская подгруппа является минимальной нормальной подгруппой. Предположим, что . Так как , то и , . Применяя лемму и учитывая, что , получаем . Из того, что разрешима, следует, что либо , либо нормальна в . По теореме, в существует подгруппа . Подгруппа содержится в некоторой -абнормальной максимальной подгруппе группы . Предположим, что . Тогда будет немаксимальна в и, по условию, найдется -субнормальная подгруппа такая, что . Ясно, что . Поэтому , а это значит, что -субнормальна в . Тогда, по теореме , . Это значит, что . Ясно также, что и максимальна в . Тогда --- минимальная несверхразрешимая группа, у которой --- абелева группа. Пусть --- произвольная максимальная подгруппа из . Рассмотрим подгруппу . Предположим, что . Так как либо , либо , то пусть для определенности . Из того, что , следует, что и . Имеем и --- минимальная нормальная подгруппа в , поэтому . Значит, подгруппа содержится в некоторой -абнормальной максимальной подгруппе из . Пусть --- произвольная подгруппа из , отличная от . Тогда, по условию, в существует -субнормальная подгруппа такая, что . Ясно, что . Поэтому . Отсюда следует, что -субнормальна в . Предположим, что . Согласно лемме , --- минимальная несверхразрешимая группа. В этом случае --- группа типа 5). Пусть . Тогда , где --- -группа. Если , то, ввиду леммы , --- минимальная несверхразрешимая группа. Если , то, применяя теорему , получаем, что --- циклическая группа. Противоречие. Предположим, что . Тогда . Подгруппа самонормализуема в , так как в и , подгруппа является максимальной. Значит, --- группа Фробениуса с ядром и дополнительным множителем . По теореме , . Противоречие. Остается рассмотреть случай, когда . По теореме Машке , и . Отсюда получаем, что и . Противоречие. Значит, . Если , то проводя рассуждения, аналогично вышеизложенным, получаем, что либо принадлежит формации, либо является минимальной несверхразрешимой группой. Итак, --- группа типа 5) из данной теоремы.