Так как
сверхразрешима и - -холловская подгруппа в , то нормальна в и по лемме Фраттини содержит силовскую 2-подгруппу из . Ясно, что . Подгруппа ненормальна в , значит, , но теперь нормальна в и нормальна в , противоречие. Теорема доказана.Теорема 3 . Пусть конечная группа
, где - циклическая подгруппа нечетного порядка, а подгруппа содержит циклическую подгруппу индекса . Если в нет нормальных секций, изоморфных , то сверхразрешима.Доказательство. Воспользуемся индукцией по порядку группы. По теореме 1 группа
разрешима, а так как условия теоремы переносятся на все фактор-группы, то подгруппа Фиттинга - единственная минимальная нормальная в подгруппа. Если - 2-группа, то содержится в и поэтому порядок равен 4, a изоморфна подгруппе группы . Если силовская 3-подгруппа из неединична, то действует на неприводимо и - нормальная в подгруппа, изоморфная , противоречие. Если , то - 2-группа и сверхразрешима.Следовательно,
- -группа порядка . Так как силовская -подгруппа в метациклическая по теореме III.11.5, то - элементарная абелева порядка и изоморфна подгруппе из , в которой силовская -подгруппа имеет порядок . Так как для некоторой максимальной в подгруппы , то из леммы 1 получаем, что - силовская в подгруппа и можно считать, что , где , a .Через
обозначим . Как и в теореме 2, легко показать, что -холловская подгруппа из неединична, а . Так как - -холловская в подгруппа и сверхразрешима, то нормальна в и содержит силовскую 2-подгруппу из , которая совпадает с силовской 2-подгруппой в . Подгруппа ненормальна в , поэтому . Но теперь нормальна в , а значит, и в , противоречие. Теорема доказана.