Пусть
. Если - циклическая, то разрешима по теореме В. А. Ведерникова. Поэтому , - циклическая подгруппа индекса 2, . Пусть , где - силовская 2-подгруппа из , - ее дополнение. Если , то разрешима. Теперь и можно считать силовской 2-подгруппой в . Так как и , то . Пусть и . Тогда и . По лемме С. А. Чунихина подгруппа максимальна в и . Представление группы подстановками смежных классов по подгруппе дважды транзитивное: если - простое число, если - составное. Из леммы 3 вытекает теперь, что .Противоречие.Доказательство теоремы 1 . Применим индукцию к порядку группы G. Пусть
и - циклические инвариантные подгруппы в и в соответственно, чьи индексы равны 1 или 2, а и - те силовские 2-подгруппы из и , для которых и есть силовская 2-подгруппа . Будем считать, что . Если , то и разрешима по теореме Ито-Хупперта. Поэтому в дальнейшем полагаем, что . Ввиду леммы 1 каждая фактор-группа удовлетворяет условиям теоремы, поэтомуДопустим, что
. Если , то и . Так как разрешима, то . Если , то и разрешима.Пусть теперь
. Тогда и . Так как не является силовской подгруппой в , то содержится как подгруппа индекса 2 в некоторой 2-группе . Обозначим через силовскую 2-подгруппу из . Очевидно, что инвариантна в .Предположим, что
и пусть - инволюция из . В все подгруппы характеристические и инвариантна в , поэтому и . Пусть - максимальная в подгруппа, которая содержит . Тогда разрешима по индукции. Если , то содержится в и . Значит, . Так как - собственная в подгруппа, то , и . Теперь - дважды транзитивная группа степени на множестве смежных классов по : если - простое число, то применимо утверждение из, стр. 609; если составное. Из леммы 3 получаем, что . Противоречие.Следовательно,
. Если , то и .Так как не содержит подгрупп, инвариантных в , то представление группы подстановками по подгруппе - точное степени 4. Поэтому - группа диэдра порядка 8, и . В этом случае неабелева. Напомним, что и . Таким образом, для силовской 2-подгруппы из имеем: - группа порядка 4 или неабелева группа порядка 8 (если ).