2. Теперь будем полагать, что каждая
-абнормальная максимальная подгруппа группы -нильпотентна. Тогда --- группа одного из типов 1)-3) леммы Если --- группа типа 1), то доказывать нечего. Пусть --- группа типа 3), т.е. , , где , , , циклическая, а --- минимальная нормальная подгруппа в . Заметим, что -сверхразрешима. Пусть --- максимальная подгруппа группы . Если содержит и не содержит , то . Если содержит и , то . А если содержит , то и . Таким образом, имеет точно три класса сопряженных максимальных подгрупп, представителями которых являются , и . Значит, в этом случае группа --- группа типа . Пусть и --- минимальная нормальная подгруппа в . Рассмотрение этого случая разобьем на две части: и .2.1. Пусть вначале
. Пусть . Очевидно, . Предположим, что имеет максимальную подгруппу , являющуюся -субнормальной в . По теореме , . Очевидно, . Ясно, что любая максимальная подгруппа из , отличная от , не является -субнормальной в . Если циклическая, то --- группа типа . Поэтому считаем, что нециклическая. Пусть --- максимальная подгруппа из , отличная от . Рассмотрим подгруппу , являющуюся -субнормальной в . Так как не -субнормальна, то . Пусть --- -абнормальная максимальная подгруппа из . Так как , то --- степень , т.е. содержится в подгруппе, сопряженной с в . Будем считать, что . Силовская -подгруппа из нормальна в и в , т.е. нормальна в . Но ---минимальная нормальная подгруппа. Поэтому --- -группа, т.е. максимальна в . По лемме , каждая собственная подгруппа из будет -субнормальной в (мы применяем утверждение 2) леммы для случая ). Теперь, по лемме , является минимальной не -группой, откуда следует, что --- группа Миллера-Морено, т.е. --- группа типа . Предположим теперь. что любая максимальная подгруппа из не является -субнормальной в . Пусть --- максимальная подгруппа из , причем . Подгруппа не принадлежит , иначе была бы -субнормальной. Если максимальна в , то --- группа Миллера-Морено. Если не максимальна в , то строго содержится в некоторой -абнормальной максимальной подгруппе из . Подгруппа не -нильпотентна, так как в противном случае , что противоречит тому, что не -субнормальна. Итак, , в существует не -нильпотентная -абнормальная максимальная подгруппа, . Но этот случай уже рассмотрен, т.е. --- группа типа . Таким образом, максимальная подгруппа из нормальна в . Рассмотрим группу , ее порядок равен . Понятно, что если и --- две различные подгруппы из , то , и значит, , так как каждая максимальная подгруппа из не нормальна в . Следовательно, --- группа Фробениуса с циклической подгруппой порядка . Так как , то получается, что циклическая. Так как --- единственная максимальная подгруппа, содержащая , то . Итак, --- группа типа .