2)
--- максимальна в -абнормальной максимальной подгруппе из .Доказательство. Пусть
--- группа минимального порядка, для которой лемма не верна. По теореме --- -группа. Пусть --- -абнормальная максимальная подгруппа группы . Тогда содержит некоторую -холлову подгруппу . По нашему предположению, не максимальна в . Тогда по лемме -субнормальна в . Если --- -максимальный простой делитель , то подгруппа нормальна в . Тогда, по теореме , .Противоречие. Пусть
--- множество простых делителей порядка группы , больших при упорядочении . По доказанному выше множество не пусто. Тогда . По индукции максимальна в . Противоречие. Лемма доказана.Пусть --- произвольная насыщенная -замкнутая формация, --- -дисперсивная группа с плотной системой -субнормальных подгрупп, не принадлежащая . Тогда любая -абнормальная максимальная подгруппа из либо принадлежат , либо является минимальной не -группой, у которой нормальная силовская подгруппа является минимальной нормальной подгруппой.
Доказательство. Предположим, что утверждения леммы не выполняются и в
существует -абнормальная максимальная подгруппа , не удовлетворяющая утверждениям леммы. Ввиду леммы и теоремы, , где --- -абнормальная максимальная подгруппа из , --- -группа, . Очевидно, что содержит некоторую -холлову подгруппу из .1. Предположим, что
. Если , то каждая -нормальная максимальная подгруппа группы будет иметь вид , где --- некоторая максимальная подгруппа из . Так как не максимальна в , то, по лемме , -субнормальна в . Тогда по теореме и --- минимальная не -группа. Предположим теперь, что . Если предположить, что , то не максимальна в . Тогда . Если не -максимальный простой делитель порядка группы , то в существует нормальная силовская -подгруппа , . Тогда подгруппа .Если
-холлова подгруппа из не максимальна в , то применяя лемму и теорему, получаем, что . Пусть максимальна в . Тогда каждая собственная подгруппа из будет не максимальна в и, следовательно, по лемме, -субнормальна в . Если подгруппа , то, по теореме, . максимальна в , так как в противном случае не максимальна в . Применяя лемму и теорему, получаем, что --- минимальная не -группа и -корадикал группы является силовской -подгруппой. Так как по нашему предположению , то порядок группы делится на и, следовательно, . Тогда, по теореме , . Противоречие. Значит, --- -максимальный простой делитель порядка группы . Тогда и каждая собственная подгруппа из не максимальна в . Если -субнормальна в , то по теореме . Так как не максимальна в , то, по условию, найдется -субнормальная в подгруппа такая, что