2.
и --- минимальная нормальная подгруппа в . Если каждая максимальная подгруппа из -субнормальна в , то --- минимальная не -группа. Значит, в найдется максимальная подгруппа , не -субнормальная в . Очевидно, что . Рассмотрим подгруппу . Подгруппа содержится в некоторой -абнормальной максимальной подгруппе из . Так как не максимальна в , то, по условию, в существует -субнормальная подгруппа такая, что . Так как и , то . Рассмотрим подгруппу . Подгруппа содержится в некоторой -абнормальной максимальной подгруппе из . По индукции либо принадлежит , либо является минимальной не -группой.2.1
Тогда
. Если предположить, что является -максимальным простым делителем порядка группы , , то силовская -подгруппа нормальна в и, по теореме, .Значит,
--- -максимальный простой делитель порядка группы . Это значит, что и . Пусть --- минимальная не -группа. Тогда совпадает с силовской -подгруппой группы и, следовательно, . Получили, что . С другой стороны, -субнормальна в , а значит, и в . Поэтому .Противоречие. Значит,
. Это значит, что . Из того, что максимальна в , а максимальна в , следует, что --- абелева дополняемая в подгруппа. Так как и , то и . По теореме Гашюца имеет дополнение в . Так как не максимальна в , то, по условию, найдется -субнормальная в подгруппа такая, что . Из того, что следует, что . Но тогда -субнормальна в . Противоречие.2.2
Тогда
--- силовская -подгруппа группы . Рассмотрим -холлову подгруппу группы , содержащую . Так как , то содержится в некоторой -абнормальной максимальной подгруппе группы . Если не максимальна в , то будет -субнормальна в . Потому максимальна в . Ввиду теоремы --- -группа. Если , то, согласно доказанному выше, лемма верна. Значит, --- минимальная нормальная подгруппа в . максимальна в . Подгруппа содержится в некоторой -абнормальной максимальной подгруппе группы . Так как не максимальна в , то, по условию, найдется -субнормальная в подгруппа такая, что . Так как , то . Но подгруппа будет содержаться в подгруппе группы . Если , то -субнормальна в . Если же , то получаем противоречие с тем, что --- -абнормальная максимальная подгруппа группы . Теорема доказана