3. Описание конечных не -групп с плотной системой -субнормальных подгрупп
В работе Закревской Л.Н. был исследован вопрос о строении группы
, в которой множество всех ее -субнормальных подгрупп плотно для случая, когда --- класс всех -нильпотентных групп. При рассмотрении произвольной формации возможен случай, когда . Строение таких групп исследуется в в данном разделе.Пусть --- произвольная насыщенная -замкнутая формация, --- группа с плотной системой -субнормальных подгрупп, не принадлежащая формации , . Тогда разрешима.
Доказательство. Пусть
и --- группа минимального порядка, для которой теорема не верна. Так как , то содержит все силовские -подгруппы, . Следовательно, каждая -субнормальная подгруппа должна содержать все силовские -подгруппы, .Пусть
--- силовская -подгруппа группы и . Тогда если в ней существует вторая максимальная подгруппа, то, по условию, найдется -субнормальная подгруппа такая, что . Тогда, по доказанному, содержит все силовские -подгруппы, . Противоречие. Значит, в нет вторых максимальных подгрупп и .Предположим, что
. Тогда каждая максимальная подгруппа группы будет -абнормальной в . Пусть некоторая неединичная силовская подгруппа группы . Если предположить, что в существует вторая максимальная подгруппа, то, по условию, найдется -субнормальная в подгруппа такая, что . Отсюда следует, что . Противоречие. Следовательно, --- простое число. Получили, что каждая неединичная силовская подгруппа из имеет простой порядок и, значит, разрешима, что противоречит нашему предположению.Пусть теперь
. Так как, по доказанному, , то . Тогда по индукции --- разрешимая группа. По доказанному, каждая силовская подгруппа фактор-группы имеет простой порядок, и, значит, разрешима. Следовательно, разрешима и сама группа . Лемма доказана.