Смекни!
smekni.com

Фактор группы Cмежные классы (стр. 1 из 5)

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

Учреждение образования

Математический факультет

Кафедра алгебры и методики преподавания математики

Курсовая работа


СОДЕРЖАНИЕ

Ведение

1.Основные определения и теоремы

2.Смежные классы

2.1. Правые и левые смежные классы

2.2 Двойные смежные классы

3. Нормальные подгруппы и фактор-группы

3.1 Нормальные подгруппы

3.2 Фактор-группы

Заключение

Список использованных источников


ВВЕДЕНИЕ

Первый значительный вклад в теорию групп внес Эварист Галуа (1811–1832) при исследовании вопроса о разрешимости в радикалах алгебраических уравнений. Именно Галуа впервые ввел понятие группы и попытался выяснить, как они устроены. До него группы в виде подстановок корней уравнения возникли также в работах Лагранжа (1771), Роффини (1799) и Абеля (1825).

В 1830–1832 годах Галуа пришел к понятиям нормальной подгруппы, разрешимой группы, простой группы. С тех пор многие ученые математики занимались исследованиями в вопросах связанными с группами, вводили новые понятия, строили свои догадки, формулировали и доказывали теоремы.

Теория групп – один из центральных разделов современной алгебры, в настоящее время активно разрабатываемый в Беларуси в научных школах Минска, Гомеля, Витебска, Новополоцка, Мозыря.

Понятие группы приобретает в настоящее время все большее господство над самыми различными разделами математики и ее приложений и наряду с понятием функции относится к самым фундаментальным понятиям всей математики.

Понятие группы не труднее понятия функции; его можно освоить на самых первых ступенях математического образования, тем более что сделать это можно на материале элементарной математики. Вместе с тем знакомство с этой теорией кажется одним из самых естественных способов ознакомления с современной математикой вообще.

Моя цель состоит в том, чтобы разобраться с начальными понятиями, связанными с группами: фактор-группы, смежные классы, доказать наиболее важные теоремы, следствия, выделить некоторые свойства.


1.ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ И ТЕОРЕМЫ

Рассмотрим некоторое непустое множество G, на котором определена бинарная алгебраическая операция.

ОПРЕДЕЛЕНИЕ 1.1. Пара (G,*) называется группой, если:

1) операция ассоциативна, т.е. для любых a, b, c ÎG выполняется

a*(b*c)=(a*b)*c;

2) в G существует нейтральный элемент относительно, т.е. для любого a Î G найдется такой элемент e ,что выполняется

a*e=e*a=a

3) для любого элемента G существует симметричный элемент относительно, т.е. для любых a, bÎ G выполняется

a*b=b*a=e;

ОПРЕДЕЛЕНИЕ 1.2. Подмножество H группы G называется подгруппой, если H-группа относительно той же операции, которая определена на G.

ОПРЕДЕЛЕНИЕ 1.3. Зафиксируем в группе G элемент a. Пересечение всех подгрупп группы G, содержащих элемент а, называется циклической подгруппой, порожденной элементом а, и обозначается áаñ.

ОПРЕДЕЛЕНИЕ 1.4. Если G совпадает с одной из своих циклических подгрупп, то G называют циклической группой.


ТЕОРЕМА 1.1. Пусть элемент аÎG имеет конечный порядок k.

Тогда

áаñ ={e, a, a

, … , a
}

Кроме того, а

= e в точности тогда, когда k делит m.

ТЕОРЕМА 1.2. Все подгруппы бесконечной циклической группы G = áаñ исчерпываются единичной подгруппой E={e} и бесконечными подгруппами á а

ñ для каждого натурального m.

ТЕОРЕМА 1.3.Все подгруппы конечной циклической группы áаñ порядка n исчерпываются циклическими подгруппами á а

ñ порядка n/m для каждого натурального m, делящего n.

ТЕОРЕМА 1.4. Непустое подмножество H группы G будет подгруппой тогда и только тогда, когда h

h
H и h
H.

2. СМЕЖНЫЕ КЛАССЫ

2.1 Правые и левые смежные классы

Пусть G– группа, H – ее подгруппа и gÎG.

ОПРЕДЕЛЕНИЕ 2.1.1. Правым смежным классом группы Gпо подгруппе H называется множество Hg= {hg | hÎH} всех элементов группы G вида hg , где h “пробегает” все элементы подгруппы H.

Аналогично определяется левый смежный класс gH={gh | hÎH}.

ЛЕММА 2.1.1. Пусть G – группа, H – подгруппа. Тогда справедливы утверждения:

1) H=He;

2) gÎHg для каждого gÎG;

3) если aÎH, то Ha=H; если bÎHa , то Hb=Ha;

4) Ha=Hb тогда и только тогда, когда ab

ÎH;

5) два смежных класса либо совпадают, либо их пересечение пусто;

6) если H– конечная подгруппа, то | Hg| = | H| для всех gÎG.

Доказательство

Первые три свойства вытекают из определения правого смежного класса

(4) Если Ha= Hb, то ea= hb, hÎH и ab

= hÎH. Обратно, если ab
ÎH, то aÎHb и Ha=Hb по утверждению 3.

(5) Пусть HaÇHb ≠Æи cÎHaÇHb. Тогда c=

a=
b и ab
=
ÎH. Теперь Ha=Hb по утверждению 4).

(6) Для каждого gÎG отображение φ: h→hg есть биекция множеств H и Hg. Поэтому | H| = | Hg|

Ч.т.д.

Из свойств 2) и 5) следует, что каждый элемент группы G содержится точно в одном правом смежном классе по подгруппе H. Это свойство позволяет ввести следующее определение.

ОПРЕДЕЛЕНИЕ 2.1.2. Пусть H подгруппа группы G. Подмножество T элементов группы G называется правой трансверсалью подгруппы H в группе G , если T содержит точно один элемент из каждого правого смежного класса группы G по подгруппе H .Итак, если T= {

| aÎI} –правая трансверсаль подгруппы H в группе G, то G=
, H
Æпри
.

Таким образом, справедлива теорема.

ТЕОРЕМА 2.1.1. Если H – подгруппа группы G, тоGявляется подгруппой непересекающихся правых смежных классов по подгруппе H.

Если G – конечная группа, то число различных правых смежных классов по подгруппе H также будет конечно, оно называется индексом подгруппы H в группе G и обозначается через |G : H|. Ясно, что индекс подгруппы H в конечной группе G совпадает с числом элементов в правой трансверсали T подгруппы H, т.е.

|G : H|=|T|=|G|/|H|

ТЕОРЕМА 2.1.2. (Лагранжа) Если H-подгруппа конечной группы G, то | G| = | H|| G: H|. В частности, порядок конечной группы делится на порядок каждой своей подгруппы.

Доказательство.

Пусть индекс Hв группе G равен n . По теореме 2.1.1. имеем разложение

G=Hg

Hg
Hg
, Hg
Hg
Æпри i ≠ j.

Так как

| Hg

| = |H| для всех i, то | G | = | H || G : H |

СЛЕДСТВИЕ 2.1.1. Порядок каждого элемента конечной группы делит порядок всей группы.

Доказательство

Порядок элемента a совпадает с порядком циклической подгруппы áаñ, порожденный этим элементом, см. теорему 1.1. Поэтому, | á аñ | = | a | делит | G|.

Аналогично определяется левая трансверсаль подгруппы H в группе G. Если L={ l

| aÎJ} – левая трансверсаль подгруппы H в группе G, то

G=

l
H, l
HÇl
H=Æпри
.

Ясно, что индекс подгруппы H в конечной группе G совпадает с числом элементов в левой трансверсали L подгруппы H, т.е. | G : H |=| L |. Для левой трансверсали справедлив аналог теоремы 2.1.1 .Поэтому из теоремы Лагранжа имеем

СЛЕДСТВИЕ 2.1.2. Число левых и число правых смежных классов конечной группы G по подгруппе Hсовпадают.

ТЕОРЕМА 2.1.3. В группе простого порядка нет неотрицательных подгрупп. В частности, группа простого порядка циклическая.

Доказательство.

Пусть G – конечная группа простого порядка p. Если H – подгруппа группы G, то по теореме Лагранжа | H | делит | G |. Поэтому либо | H |=1 и H – единичная подгруппа, либо | H |= p и H совпадает с группой G. Выберем неединичный элемент а в группе G и рассмотрим циклическую подгруппу áаñ, порожденную этим элементом. Так как a ≠ e ,то á аñ ≠ E, поэтому áаñ = G и G – циклическая группа.