Смекни!
smekni.com

Математические методы и модели в экономике 2 (стр. 3 из 4)

х12=300

; х2=300-х1

16(300-х1)-8х1+48=0

Тогда

(деталей)

х2 =300-202=88 (деталей)

Ответ: на первом предприятии следует произвести 202 детали, а на втором – 88 деталей.

Задача 9

Интервал планирования Т=5 лет. Функция затрат на ремонт а дальнейшую эксплуатацию К(τ)= 0,2τ+τ2 (р.). Функция замены Р(τ)=10+0,05τ2(р.). Определить оптимальные планируемые затраты по годам пятилетки, если количество оборудования по возрастным группам n(τ=0)=10; n(τ=1)=12; n(τ=2)=8; n(τ=3)=5.

Решение

Рассчитаем переходы (затраты на замену и ремонт) оборудования для каждого из возможных состояний τ.

τ 0 1 2 3 4 5 6 7 8
К - 1,2 4,4 9,6 16,8 26 37,2 50,4 65,6
Р 10 10,05 10,2 10,45 10,8 11,25 11,8 12,45 -

Произведем пошаговую оценку альтернативных вариантов затрат для возможных различных состояний τ на каждом шаге t, т.е.

Начало оценивается с последнего t=5 шага.

Шаг 1; t=5.

Все состояния на последнем интервале приравниваются к 0:

F85=0; F75=0; F65=0; F55=0; F45=0; F35=0; F25=0; F15=0.

Шаг 2; t=4.

Шаг 3; t=3.

Шаг 4; t=2.

Шаг 5; t=1.

Шаг 6; t=0.

Функции затрат F00, F10, F20, F30 – затраты на единицу оборудования соответственно для возраста τ=0,1,2,3 года. Определим стратегию замены и ремонта оборудования каждого возраста. На схеме стратегии выделены стрелками (только оптимальные шаги). Определяем затраты по годам планирования:

t=1; Q1= 10*11,2+12*4,4+8*11,4+5*11,65=314,25

t=2; Q2= (10+8+5)*4,4+12*11,4=238

t=3; Q3= (10+8+5)*11,4+12*4,4=315

t=4; Q4= (10+8+5)*4,4+12*11,4=238

t=5; Q5=(10+8+5)* 9,6+12*4,4=237,6

Проверка: сумма затрат для оборудования каждого возраста должна равняться сумме затрат на них по годам планирования. Затраты на каждый возраст:

=41*10+36*12+41,2*8+41,45*5=1378,85

Сумма затрат по годам:

Q1+ Q2+ Q3+ Q3=314,25+238+315+238+237,6=1375,85

Задача 11

Дана схема движения транспорта с n=5 пунктами и расстояниями между ними. Построить кольцевой маршрут объезда всех пунктов наименьшей длины.

13 12 11 7
10 6 9 4
13 10 12 7
9 6 14 8
12 13 9 10

Решение

Стоим приведенную матрицу с целью получения в каждой строке и столбце не меньше 1 кратчайшего маршрута (0 приведенного значения). Коэффициенты приведения

по строкам: К1=7+4+7+6+9=33

6 5 4 0
6 2 5 0
6 3 5 0
3 0 8 2
3 4 0 1

по столбцам (у приведенной матрицы): К2=3+1=4

Кпр=33+4=37 (сумма самых коротких маршрутов).
6 5 3 0
3 2 4 0
3 3 4 0
0 0 8 2
0 4 0 0

Для нулевых значений определяем коэффициенты значимости:

К41=0; К51=0; К42=3; К53=2; К25=2; К15= К35=3; К54=3.

Выбираем аij=0 с максимальным Кij, например, К15=3.

В матрице назначения присваиваем Х15=1. В полученную матрицу в клетку (5,1) вводим запрет.

Приведем матрицу.
2 3 4 1
2
0 2 1
3 0 1 0
4 0 8 0
5 4 0 0

Подсчитаем новое значение Кпр: 37+2+3=42.

Определяем коэффициенты значимости для нулевых значений.

К3242= К534131=0; К23= К54=1.

Выбираем аij=0 с максимальным Кij, например, К23=1.

В матрице назначения присваиваем Х23=1. В полученную матрицу в клетку (3,2) вводим запрет.

2
4
1
3 1 0
4 0 0
5
4 0

Так как матрица уже приведена, определяем коэффициенты значимости для нулевых значений.

К42=4; К41=0; К31=1; К54=5.

Присваиваем в матрице назначения Х54=1. В полученную матрицу в клетку (4,1) вводим запрет.

2 1
3 0
4 0

В полученной матрице осталось два маршрута, которые и вносим в кольцевой маршрут: Х31=1; Х42=1.

Введем все маршруты в матрицу назначения.

1
1
1
1
1

Длина полученного маршрута:

Условие оптимальности F=Кпр.=42 выполняется, то полученный кольцевой маршрут является оптимальным.

Задача 13

Рассматривается круглосуточная работа пункта проведения профилактического осмотра автомашин. Пункт состоит из n=3 каналов; на осмотр каждой машины затрачивается

При осмотре группа выявляет дефект с вероятностью р=0,7; на осмотр поступает в среднем
. Обслуживание одной заявки приносит среднюю прибыль С1=3 руб./час, создание 1 канала требует среднего расхода С2=18000 тыс.р., эксплуатация 1 канал в единицу времени требует среднего расхода С3=8 руб./час. Определить характеристики работы пункта. Установить, при каких соотношениях С12, С3 система будет рентабельна, и если система не рентабельна при заданных С12, С3 , то при каких она будет рентабельна? Через какое время эксплуатации система будет приносить прибыль?

Решение

Характеристики работы системы:

1. Среднее число занятых каналов