Смекни!
smekni.com

Математика в современном мире 2 (стр. 2 из 3)

Во-вторых, лаконизм, т.е. сознательное стремление всегда находить кратчайший ведущий к данной цели логический путь, беспощадное отбрасывание всего, что не абсолютно необходимо для безупречной полноценности аргументации. Математическое сочинение хорошего стиля не терпит никакой “воды”, никаких украшающих, ослабляющих логическое напряжение разглагольствований, отвлечений в сторону; предельная скупость, суровая строгость мысли и ее изложения составляют неотъемлемую черту математического мышления. Черта эта имеет большую ценность не только для математического, но и для любого другого серьезного рассуждения. Лаконизм, стремление не допускать ничего излишнего, помогает и самому мыслящему, и его читателю или слушателю полностью сосредоточиться на данном ходе мыслей, не отвлекаясь побочными представлениями и не теряя непосредственного контакта с основной линией рассуждения.

Корифеи науки, как правило, мыслят и выражаются лаконично во всех областях знания, даже тогда, когда мысль их создает и излагает принципиально новые идеи. Какое величественное впечатление производит, например, благородная скупость мысли и речи величайших творцов физики: Ньютона, Эйнштейна, Нильса Бора! Может быть, трудно найти более яркий пример того, какое глубокое воздействие может иметь на развитие науки именно стиль мышления ее творцов.

Для математики лаконизм мысли является непререкаемым, канонизированным веками законом. Всякая попытка обременить изложение не обязательно нужными (пусть даже приятными и увлекательными для слушателей) картинами, отвлечениями, разглагольствованиями заранее ставится под законное подозрение и автоматически вызывает критическую настороженность.

В-третьих, четкая расчлененность хода рассуждений. Если, например, при доказательстве какого-либо предложения мы должны рассмотреть четыре возможных случая, из которых каждый может разбиваться на то или другое число подслучаев, то в каждый момент рассуждения математик должен отчетливо помнить, в каком случае и подслучае его мысль сейчас обретается и какие случаи и подслучаи ему еще остается рассмотреть. При всякого рода разветвленных перечислениях математик должен в каждый момент отдавать себе отчет в том, для какого родового понятия он перечисляет составляющие его видовые понятия. В обыденном, не научном мышлении мы весьма часто наблюдаем в таких случаях смешения и перескоки, приводящие к путанице и ошибкам в рассуждении. Часто бывает, что человек начал перечислять виды одного какого-нибудь рода, а потом незаметно для слушателей (а часто и для самого себя), пользуясь недостаточной логической отчетливостью рассуждения, перескочил в другой род и заканчивает заявлением, что теперь оба рода расклассифицированы; а слушатели или читатели не знают, где пролегает граница между видами первого и второго рода[5].

Для того чтобы сделать такие смешения и перескоки невозможными, математики издавна широко пользуются простыми внешними приемами нумерации понятий и суждений, иногда (но гораздо реже) применяемыми и в других науках. Те возможные случаи или те родовые понятия, которые надлежит рассмотреть в данном рассуждении, заранее перенумеровываются; внутри каждого такого случая те подлежащие рассмотрению подслучаи, которые он содержит, также перенумеровываются (иногда, для различения, с помощью какой-либо другой системы нумерации). Перед каждым абзацем, где начинается рассмотрение нового подслучая, ставится принятое для этого подслучая обозначение (например, II 3, -это означает, что здесь начинается рассмотрение третьего подслучая второго случая, или описание третьего вида второго рода, если речь идет о классификации). И читатель знает, что до тех пор, покуда он не натолкнется на новую числовую рубрику, всё излагаемое относится только к этому случаю и подслучаю. Само собою разумеется, что такая нумерация служит лишь внешним приемом, очень полезным, но отнюдь не обязательным, и что суть дела не в ней, а в той отчетливой расчлененности аргументации или классификации, которую она и стимулирует, и знаменует собою.

В-четвертых, скрупулезная точность символики, формул, уравнений. То есть “каждый математический символ имеет строго определенное значение: замена его другим символом или перестановка на другое место, как правило, влечет за собою искажение, а подчас и полное уничтожение смысла данного высказывания”.

Выделив основные черты математического стиля мышления, А.Я. Хинчин замечает, что математика (особенно математика переменных величин) по своей природе имеет диалектический характер, а следовательно, способствует развитию диалектического мышления. Действительно, в процессе математического мышления происходит взаимодействие наглядного (конкретного) и понятийного (абстрактного). “Мы не можем мыслить линии, – писал Кант, – не проведя её мысленно, не можем мыслить себе три измерения, не проведя из одной точки трех перпендикулярных друг к другу линий”[6].

Взаимодействие конкретного и абстрактного “вело” математическое мышление к освоению новых и новых понятий и философских категорий. В античной математике (математике постоянных величин) таковыми были “число” и “пространство”, которые первоначально нашли отражение в арифметике и евклидовой геометрии, а позже в алгебре и различных геометрических системах. Математика переменных величин “базировалась” на понятиях, в которых отражалось движение материи, - “конечное”, “бесконечное”, “непрерывность”, “дискретное”, “бесконечно малая”, “производная” и т.п.

Мы живем в математической цивилизации - и, может быть, умираем вместе с нею”

Выдающегося российского математика академика Игоря Ростиславовича Шафаревича считал, что основная догма научной идеологии - это вера в математизацию. Она утверждает, что всё (или, по крайней мере, всё существенное) в природе может быть измерено, превращено в числа (или другие математические объекты), и что путем совершения над ними различных математических манипуляций можно предсказать и подчинить своей воле все явления природы и общества. Кант говорил, что каждая область сознания является наукой настолько, насколько в ней содержится математика. Пуанкаре писал, что окончательная, идеальная фаза развития любой научной концепции - это ее математизация. В некотором смысле можно сказать, что мы живем в математической цивилизации - и, может быть, умираем вместе с нею. Ввиду сказанного выше математику естественно проявить интерес к этим взаимосвязанным явлениям.

Научная идеология имеет сейчас уже длинную историю. Еще Галилей говорил, что "книга науки написана на языке геометрии" (геометрией тогда называли математику). Приблизительно в то же время (1605) Кеплер писал в письме своему другу: "Моя цель показать, что небесную машину нужно сравнивать не с божественным организмом, а с часовым механизмом". Декарт сравнивал животное с машиной, а столетие спустя Ламетри в книге "Человек-машина" распространил этот принцип и на человека.

Однако лишь во времена Ньютона механическая концепция мира полностью покорила себе умы. Ньютон и его последователи называли его теорию "Системой Мира". Она вдохновляла не только его современников, но и многие следующие поколения. Казалось, что можно развить полную картину природы на основе небольшого числа законов, из которых все остальное может быть дедуцировано при помощи решения дифференциальных уравнений, разложения функций в степенные ряды и других математических процедур.

Но больше всех был зачарован этой картиной сам Ньютон. Неслучайно свое главное сочинение он назвал "Математические начала натуральной философии". В конце его он прокламирует применимость тех же принципов к живым существам, чтобы и эта часть природы была включена в его "Систему Мира". Он пишет: "Теперь следовало бы кое-что добавить о некотором тончайшем эфире, проникающем все сплошные тела и в них содержащемся, коего силою... возбуждается всякое чувствование, заставляющее члены животных двигаться по желанию, передаваясь именно колебаниями этого эфира через тончайшие нити нервов от внешних органов чувств мозгу и от мозга мускулам. Но это не может быть изложено кратко, к тому же нет и достаточного запаса опытов, коими законы действия этого эфира были бы точно определены и показаны". Очевидно, Ньютон имеет в виду механическую теорию эфира и дает понять, что лишь недостаток места и неполнота экспериментальной базы мешают ему развить механическую теорию функционирования тел животных на базе эфира.

В то же время стали слышны и встревоженные голоса. Задавались вопросом: остается ли в этой механической системе мира место для Бога? Можно было бы даже спросить - для чего-либо живого? Вселенная выглядела как гигантская машина, функционирующая исключительно на основе механических законов. И опять наиболее встревожен был сам Ньютон. Религиозные убеждения Ньютона и до сих пор остаются несколько загадочными. Но несомненно, он был глубоко религиозным человеком. Бесспорно, противоречие между его механической системой мира и его религиозными чувствами было для него очень болезненным. Он ясно выразил это в своей переписке. Когда ему было около 50 лет, Ньютон пережил тяжелый нервный кризис, некоторые исследователи говорят даже о психическом заболевании. Он не мог спать по нескольку дней и ночей подряд. Его память была спутанной. Он переживал глубокую депрессию. Есть основания считать, что в этом случае мы имеем дело с кризисом мировоззрения.

Основная догма научной идеологии - это вера в то, что все измеримо, все может быть выражено в числах, переведено на язык математики.