Смекни!
smekni.com

Средние линии геометрических фигур (стр. 1 из 2)

Гомельская научно-практическая конференция школьников по математике, ее приложениям и информационным технологиям «Поиск»

Учебно-исследовательская работа

Средние линии геометрических фигур

Ученика:

Морозовой Елизаветы

Гомель 2010

Оглавление

Введение

1.Свойства средних линий

2. Треугольник, четырехугольник, параллелограмм

3. Четырехугольник, тетраэдр. Центры масс

4. Тетраэдр, октаэдр, параллелепипед, куб

Заключение

Список использованной литературы

Приложение

Введение

Геометрия является неотъемлемой составляющей общей культуры, а геометрические методы служат инструментом познания мира, способствуют формированию научных представлений об окружающем пространстве, раскрытию гармонии и совершенства Вселенной. Геометрия начинается с треугольника. Вот уже два тысячелетия треугольник является как бы символом геометрии, но он не символ. Треугольник – атом геометрии. Треугольник неисчерпаем – постоянно открываются его новые свойства. Чтобы рассказать обо всех известных его свойствах, необходим том сравнимый по объему с томом Большой энциклопедии. Мы хотим рассказать о средних линиях геометрических фигур и их свойствах.

В нашей работе прослеживается цепочка теорем, которая охватывает весь курс геометрии. Она начинается с теоремы о средних линиях треугольника и приводит к интересным свойствам тетраэдра и других многогранников.

Средняя линия фигур — отрезок, соединяющий середины двух сторон данной фигуры.


1. Свойства средних линий

1. Свойства треугольника:

· при проведении всех трёх средних линий образуются 4 равных треугольника, подобных исходному с коэффициентом 1/2.

· средняя линия параллельна основанию треугольника и равна его половине;

· средняя линия отсекает треугольник, который подобен данному, а его площадь равна одной четверти его площади.

2. Свойства четырёхугольника:

· если в выпуклом четырехугольнике средняя линия образует равные углы с диагоналями четырехугольника, то диагонали равны.

· длина средней линии четырехугольника меньше полусуммы двух других сторон или равна ей, если эти стороны параллельны, и только в этом случае.

· середины сторон произвольного четырёхугольника — вершины параллелограмма. Его площадь равна половине площади четырехугольника, а его центр лежит на точке пересечения средних линий. Этот параллелограмм называется параллелограммом Вариньона;

· Точка пересечения средних линий четырехугольника является их общей серединой и делит пополам отрезок, соединяющий середины диагоналей. Кроме того, она является центроидом вершин четырехугольника.

3. Свойства трапеции:

· средняя линия параллельна основаниям трапеции и равна их полусумме;

· середины сторон равнобедренной трапеции являются вершинами ромба.

2. Треугольник, четырехугольник, параллелограмм

К любому треугольнику KLM можно пристроить три равных ему треугольника АКМ, BLK, CLM, каждый из которых образует вместе с треугольником KLM параллелограмм (рис. 1). При этом AK = ML=KB, и к вершине К примыкают три угла, равные трем разным углам треугольника, в сумме составляющие 180°, поэтому К — середина отрезка АВ; аналогично, L — середина отрезка ВС, а М — середина отрезка СА.

Теорема 1. Если соединить в любом треугольнике середины сторон, мы получим четыре равных треугольника, причем средний составляет с каждым из трех других параллелограмм.

В этой формулировке участвуют сразу все три средние линии треугольника.

Теорема 2. Отрезок, соединяющий середины двух сторон треугольника, параллелен третьей стороне треугольника и равен ее половине (см. рис. 1).


Именно эта теорема и обратная к ней — о том, что прямая, параллельная основанию и проходящая через середину одной боковой стороны треугольника, делит пополам и другую боковую сторону,— чаще всего нужны при решении задач.

Из теоремы о средних линиях треугольника вытекает свойство средней линии трапеции (рис. 2), а также теоремы об отрезках, соединяющих середины сторон произвольного четырехугольника.

Теорема 3. Середины сторон четырехугольника являются вершинами параллелограмма. Стороны этого параллелограмма параллельны диагоналям четырехугольника, а их длины равны половинам длин диагоналей.

В самом деле, если К и L — середины сторон АВ и ВС (рис. 3), то KL — средняя линия треугольника ABC, поэтому отрезок KL параллелен диагонали АС и равен ее половине; если М и N — середины сторон CD и AD, то отрезок MN также параллелен АС и равен АС/2. Таким образом, отрезки KL и MN параллельны и равны между собой, значит, четырехугольник KLMN — параллелограмм.

В качестве следствия из теоремы 3 получаем интересный факт (т. 4).

Теорема 4. В любом четырехугольнике отрезки, соединяющие середины противоположных сторон, делятся точкой пересечения пополам.

В этих отрезках можно увидеть диагонали параллелограмма (см. рис. 3), а в параллелограмме диагонали делятся точкой пересечения пополам (эта точка — центр симметрии параллелограмма).

Мы видим, что теоремы 3 и 4 и наши рассуждения остаются верными и для невыпуклого четырехугольника, и для самопересекающейся четырехугольной замкнутой ломаной (рис. 4; в последнем случае может оказаться, что параллелограмм KLMN «вырожденный» — точки К, L, М, N лежат на одной прямой).

Покажем, как из теорем 3 и 4 можно вывести основную теорему о медианах треугольника.

Теорема 5. Медианы треугольника пересекаются в одной точке и делятся ею в отношении 2:1 (считая от вершины, из которой проведена медиана).

Проведем две медианы AL и СК треугольника ABC. Пусть О — точка их пересечения. Середины сторон невыпуклого четырехугольника АВСО — точки К, L,MиN (рис. 5) — вершины параллелограмма, причем точкой пересечения его диагоналей КМ и LN для нашей конфигурации будет точка пересечения медиан О. Итак, AN = NO = OL и CM=MO = OK, т. е. точка О делит каждую из медиан AL и СК в отношении 2:1.

Вместо медианы СК мы могли бы рассмотреть медиану, проведенную из вершины В, и убедиться точно так же, что и она делит медиану AL в отношении 2:1, т. е. проходит через ту же точку О.

3.Четырехугольник и тетраэдр. Центры масс

Теоремы 3 и 4 верны и для любой пространственной замкнутой ломаной из четырех звеньев АВ, ВС, CD, DA, четыре вершины А, В, С, D которой не лежат в одной плоскости.

Такой пространственный четырехугольник можно получить, вырезав из бумаги четырехугольник ABCD и согнув его по диагонали под некоторым углом (рис. 6, а). При этом ясно, что средние линии KL и MN треугольников ABC и ADC остаются по-прежнему их средними линиями и будут параллельны отрезку АС и равны АС/2. (Здесь мы используем тот факт, что для пространства остается верным основное свойство параллельных прямых: если две прямые KL и MN параллельны третьей прямой АС, то KL и MN лежат в одной плоскости и параллельны между собой.)

Таким образом, точки К, L, М, N — вершины параллелограмма; тем самым отрезки КМ и LN пересекаются и делятся точкой пересечения пополам. Вместо четырехугольника здесь можно говорить о тетраэдре — треугольной пирамиде ABCD: середины К, L, М, N его ребер АВ, AC, CD и DA всегда лежат в одной плоскости. Разрезав тетраэдр по этой плоскости (рис. 6, б), мы получим параллелограмм KLMN, две стороны которого параллельны ребру АС и равны

АС/2, а две другие — параллельны ребру BD и равны BD/2.

Такой же параллелограмм — «среднее сечение» тетраэдра — можно построить и для других пар противоположных ребер. Каждые два из этих трех параллелограммов имеют общую диагональ. При этом середины диагоналей совпадают. Итак, мы получаем интересное следствие:

Теорема 6. Три отрезка, соединяющие середины противоположных ребер тетраэдра, пересекаются в одной точке и делятся ею пополам (рис. 7).


Этот и другие обсуждавшиеся выше факты естественно объясняются на языке механики — с помощью понятия центра масс. В теореме 5 говорится об одной из замечательных точек треугольника — точке пересечения медиан; в теореме 6 — о замечательной точке для четверки вершин тетраэдра. Эти точки — центры масс соответственно треугольника и тетраэдра. Вернемся сначала к теореме 5 о медианах.

Поместим в вершинах треугольника три одинаковых груза (рис. 8).

Массу каждого примем за единицу. Найдем центр масс этой системы грузов.

Рассмотрим сначала два груза, находящихся в вершинах А и В: их центр масс расположен в середине отрезка АВ, так что эти грузы можно заменить одним грузом массой 2, помещенным в середину К отрезка АВ (рис. 8, а). Теперь нужно найти центр масс системы из двух грузов: одного массой 1 в точке С и второго — массой 2 в точке К. По правилу рычага, центр масс такой системы находится в точке О, делящей отрезок СК в отношении 2:1 (ближе к грузу в точке К с большей массой — рис. 8, б).

Мы могли сначала объединить грузы в точках В и С, а затем — полученный груз массой 2 в середине L отрезка ВС — с грузом в точке А. Или сначала объединить грузы А и С, а. затем присоединить В. В любом случае мы должны получить тот же результат. Центр масс находится, таким образом, в точке О, делящей каждую из медиан в отношении 2:1, считая от вершины. Подобными соображениями можно было объяснить и теорему 4 — тот факт, что отрезки, соединяющие середины противоположных сторон четырехугольника, делят друг друга пополам (служат диагоналями параллелограмма): достаточно поместить в вершинах четырехугольника одинаковые грузы и объединить их попарно двумя способами (рис. 9).