або
де
Її графік наведено на рис. 9
Рисунок 9
Як видно з рис. 9, функція розподілу дискретної випадкової величини є кусково неперервною. У точці хi вона зростає на величину
. При цьому .3 Найважливіші закони розподілу дискретних випадкових величин
Біноміальний розподіл. Розглядається серія з n випробувань, у кожному з яких подія А відбувається або не відбувається. Ймовірність появи події А в кожному випробуванні постійна і не залежить від результатів інших випробувань. Це схема Бернуллі:
Р(А)=р;
.Як випадкову величину, яку позначимо
, розглянемо кількість появ події А у n випробуваннях. Не важко перевірити, що ймовірність появи події визначається формулою Бернуллі у вигляді ; (1)де
– кількість сполучень з елементів по (1).Відповідний цїй формулі закон розподілу випадкової величини називається біноміальним, тому що його коефіцієнти збігаються з коефіцієнтами членів розкладання бінома Ньютона (p+q)n (табл. 4).
Таблиця 4
xn | 0 | 1 | … | k | … | n |
pn | qn | npqn-1 | … | … | pn |
Нехай кількість випробувань
необмежено зростає, але так, щоб її добуток на ймовірність появи події A в кожному випробуванні, тобто , залишався скінченою величиною порядку одиниці. Це передбачає дуже мале значення ймовірності , отже розглядаються дуже рідкі події та дуже довгі серії випробувань. При формалізації відзначених умов у формулі Бернуллі (1) можна перейти до границіабо остаточно отримати формулу Пуассона для ймовірності появи
разів дуже рідкої події A у практично нескінченних випробуванняхРозподіл випадкової величина
за цією формулою називається законом Пуассона (законом рідкісних подій). Число l називається параметром розподілу. Цей закон можна подати у вигляді:Таблиця 5
x | 0 | 1 | … | k | … |
p | e-l | le-l | … | … |
Розглянемо типову задачу, що приводить до розподілу Пуассона. Нехай подія А означає відмову складного пристрою протягом малого проміжку часу. Причиною відмови є вихід з ладу будь-якої деталі. Режим роботи пристрою не змінюється з часом, відмова окремих деталей відбувається незалежно одна від одної, причому за одиницю часу "в середньому" відбувається l відмовлень.
При цих допущеннях з великим ступенем точності виконуються такі умови:
1. Ймовірність появи відмови на проміжку часу (0, Т) така сама, як і на задовільному проміжку довжиною T (t,t+T).
2. Появи відмовлень на проміжках часу, що не перекриваються, незалежні.
Ймовірність появи відмовлення за нескінченно малий проміжок часу визначається за формулою:
р(А)=l Dt+o(Dt), Dt®0.
4. Імовірність появи більше однієї відмови є о(Dt), Dt®0.
Розіб'ємо інтервал (t,t+T) на n рівних частин
.Розглядатимемо реєстрацію відмови як окреме випробування
При цьому приходимо до розподілу Пуассона для кількості відмовлень за час Т
Геометричний закон розподілу. Проводиться серія випробувань до першої появи події А. Ймовірність появи події А в кожному випробуванні дорівнює р і не залежить від інших випробувань.
Як випадкову величину
розглядатимемо кількість проведених випробувань, необхідних для першої появи події А. Очевидно, що закон розподілу цієї випадкової величини можна подати таблицею:Таблиця 6
x | 1 | 2 | 3 | … | k |
P | P | qp | q2p | … | qk-1p |