1 Випадкова величина. Функція розподілу випадкової величини
Зіставимо кожну елементарну подію конкретного випробування з деяким числом. Наприклад, розглянемо випробування, що полягає в підкиданні монети. Маємо простір елементарних подій – множину з двох можливих рівно ймовірних наслідків випробування: w1 – випадання "решки" та w2 – випадання герба. Введемо до розгляду функцію x= f(w), що визначається за формулами: f(w1)=0, f(w2)=1. Це – числова функція (випадкова величина), яка залежить від випадку. Позначимо її через
Для значень, яких у результаті випробувань може рівно ймовірно набувати функція
У загальному випадку задовільної випадкової величини позначатимемо її однією з грецьких літер x,h,..., а значення, яких вона набуває літерами латинської абетки: х, y,..... Відповідність між цими значеннями та ймовірностями, з якими їх набуває така функція
Таблиця 1
| | | | ... | |
| | | | ... | |
У випадку зазначеної конкретної випадкової величини, пов’язаної з випадінням сторін підкинутої монети, табл. 1 конкретизується у вигляді табл. 2:
Таблиця 2
| 0 | 1 |
| 1/2 | 1/2 |
Цю закономірність можна також наочно представити на площині xOy, розмістивши на горизонтальній осі значення
Ще більш наочно закон розподілу дискретної випадкової величини зображається специфічною функцією
що називається функцією розподілу випадкової величини
Рисунок 1
У відповідності з її визначенням, вона дає в точці x ймовірність того, що випадкова величина розташована на осі Ox зліва від цієї точки x. Зокрема, для випадкової величини, заданої законом розподілу в табл. 2, ця функція має складний вигляд із різними представленнями на різних інтервалах
На рис. 2 наведено її графік з двома неусувними розривами 1-го роду.
Рисунок 2
Розглянемо ще один приклад введення випадкової величини. Нехай є мішень – круг радіуса а, влучення до якого гарантовано. Як випадкову величину, що позначимо як
При цьому функція розподілу
графік якої зображено на рис. 3, має вигляд
Рисунок 3
Модифікуємо попередній приклад: нехай всередині круга радіуса а, влучення до якого гарантовано, проведено два концентричні кола (рис. 4) з радіусами a/3 і 2a/ В залежності від відстані точки влучення від центра мішені стрілець одержує 10, 5 чи 1 бал, відповідно.
Рисунок 4
За випадкову величину, що позначимо як
При цьому закон розподілу випадкової величини
Таблиця 3
| 1 | 5 | 10 |
| 5/9 | 1/3 | 1/9 |
За цим законом розподілу випадкової величини
Рисунок 5
Властивості функції розподілу:
1. F(x) – неубутна функція. Дійсно, якщо x1<x2 (рис. 6).
Рисунок 6
F(x2)=P(x<x2)=P(x<x1)+P(x1<x<x2)>P(x<x1)=F(x1); F(x1)<F(x2);
2. F(+¥)=1; F(-¥)=0; F(+¥)=P(x<¥)=1;
P(-¥<x<¥)=1; F(-¥)=0;
P(a£x<b)=P(x<b) - P(x<a)=Fx(b) - Fx(a).
Якщо функція розподілу в деякій точці x=а має неусувний розрив 1-го роду – стрибок на величину р, (рис. 7) то Р(x=а)=р.
Рисунок 7
Дійсно, розглянемо [а, b), b® a+0.
P(x=а)=
Найбільш важливими типами випадкових величин є дискретні і неперервні випадкові величини, які будуть розглянуті більш докладно.
2 Дискретна випадкова величина
Випадкова величина називається дискретною, якщо її можливі значення можна перенумерувати.
Нехай х1,х2,…,хn – можливі значення дискретної випадкової величини в порядку зростання.
Випадкові події [x=x1], [x=x2], …[x=xn] утворять повну систему елементарних подій. При цьому
Закон розподілу дискретної випадкової величини можна задати таблицею (табл. 1) чи геометрично – точками на площині (xi, pi); або ламаною, що з'єднує ці точки та називається багатокутником розподілу (рис. 8):
Рисунок 8
Цьому закону розподілу є відповідною функція розподілу
Fx(x)=P(x<x)=