Цей приклад показує, що існують не транзитивні простори залежності, у яких мінімальні множини, що породжують, незалежні, тобто є базисами.
Приклад 9.
Задамо на множині N натуральних чисел наступне відношення залежності:
Z .
Одержуємо нескінченну строго зростаючий ланцюжок оболонок в Z . При
одержуємо .Таким чином, маємо
.Зауваження.
Поняття простору залежності можна й зручно визначати через базу залежності. Саме, множина B всіх мінімальних залежних множин простору залежності Z назвемо його базою. Ясно, що множини з B не порожні, кінцеві й не втримуються друг у другу. Крім того, будь-яка незалежна множина містить деяка множина бази B. Простір Z має єдину базу й однозначно визначається їй. Тому простору залежності можна задавати базами.
Легко бачити, що вірно наступне твердження:
Непуста множина B підмножин множини задає на відношення залежності тоді й тільки тоді, коли множини з B не порожні, кінцеві й не включений друг у друга.
У термінах бази B можна сформулювати умова транзитивності відповідного простору залежності.
2. Простір залежності
Теорема 1.
Нехай Z - довільний простір залежності. Розглянемо наступні три твердження:
X — базис в A;
X — максимальна незалежна підмножина в A;
X — мінімальна множина, що породжує, в A.
Тоді й .
Доказ:
(i) (ii) Якщо X – базис, то по визначенню 6 X – незалежна підмножина, що породжує. Доведемо від противного, що воно максимальне. Нехай існують незалежні множини
. Візьмемо , тоді незалежно, тому що будь-яка підмножина незалежної множини незалежно. Тому по визначеннях 3 і 5 , звідки , одержали протиріччя з умовою. Тому X є максимальною незалежною підмножиною в A.(ii) (i) Доведемо від противного, нехай
не базис в , тобто . Тоді таке, що незалежно й лежить в , одержали протиріччя з максимальністю .(ii) (iii) Якщо X — максимальна незалежна множина в A, те всякий елемент в A або належить X, або такий, що
залежно, а тому в тім і іншому випадку, тобто Оскільки , те X - множина, що породжує. Виходить, - базис простору .Доведемо тепер, що воно мінімально. Нехай множина
. Доведемо, що воно не є породжує для A. Візьмемо , але . Тоді незалежно, як підмножина множини X. Тому по визначеннях 3 і 5 і , а це значить, що Y не є множиною, що породжує. Висновок: X – мінімальна множина, що породжує, в A.(i) (iii) Справедливо, по доведеним вище твердженнях (i)
(ii) і (ii) (iii). :Визначення - позначення 10.
Для довільної множини простору залежності Z позначимо множину всіх максимальних незалежних підмножин, а через - множину всіх мінімальних підмножин, що породжують, цієї множини.
З теореми 1 випливає, що
збігається із множиною всіляких базисів простору й для кожного .Наступний приклад показує, що зворотне включення
вірно не завжди.Приклад 10.
Розглянемо дев'яти елементну множину
, що записана у вигляді матриці . Залежними будемо вважати підмножини множини , що містять «прямі лінії»: стовпці, рядки або діагоналі матриці .Розглянемо множини
й , вони буде максимальними незалежними, тому що не містять прямих і при додаванні будь-якого елемента з , що не лежить у них, стають залежними. Тут максимальні незалежні множини містять різна кількість елементів.Розглянемо ще одну множину
, вона є мінімальним що породжує, тому що якщо виключити з нього хоча б один елемент, то воно вже не буде множиною, що породжує. Легко помітити, що залежно, тому не є базисом. Даний приклад ілюструє, що (iii) (i) не вірно в загальному випадку, тобто для довільних просторів залежності.Для будь-якого простору залежності Z виконуються наступні властивості:
Заміщення. Якщо
Доказ:
Нехай
, . Тому що залежить від , те залежить від незалежної підмножини множини , тобто залежно. Тепер, якби , те було б підмножиною множини й тому , що суперечило б нашому припущенню. Тому . Візьмемо . Тоді незалежно, тому що . Але залежно. Звідки .