(iv) (ii) У силу теорем 1 і 3 і доведена еквівалентності
(i) (ii).■
Далі будемо розглядати транзитивний простір залежності Z .
Визначення 12.
Потужність максимальної незалежної підмножини даної множини називається рангом цієї множини: .
Будемо розглядати кінцеві підмножини
.Мають місце наступні властивості.
Властивість 1о: Z
.Доказ:
Z .Властивість 2о:
Z .Доказ: Z, візьмемо , тоді по властивості 1о
і . Зворотне твердження потрібне з визначення 13.Властивості 3о – 7о сформульовані для .
Властивість 3о:
.Доказ: Ясно, що
, і тому що число елементів будь-якої підмножини не більше числа елементів самої множини, то дана властивість виконується.Властивість 4о:
.Доказ: потрібне з того, що незалежна підмножина в
можна продовжити до максимальної незалежної підмножини в ;Властивість 5о:
.Доказ:
Нехай
Тоді И потім . Маємо .Властивість 6о:
.Доказ: випливає із властивості 40;
Властивість 7о:
.Доказ:
.4. Зв'язок транзитивних відносин залежності з операторами замикання
Транзитивне відношення залежності також може бути описане за допомогою алгебраїчного оператора замикання деякого типу. Для початку сформулюємо визначення використовуваних понять.
Визначення 13.
Множина E підмножин множини A називається системою замикань, якщо E і система E замкнута щодо перетинань, тобто ∩D E для кожної непустої підмножини D E
Визначення 14.
Оператором замикання на множині A називається відображення J множини B (A) у себе, що володіє наступними властивостями:
J. 1. Якщо , то J(X) J(Y);
J. 2. X J(X);
J. 3. JJ(X) = J(X), для всіх X, Y B (A).
Визначення 15.
Оператор замикання J на множині A називається алгебраїчним, якщо для будь-яких і тягне для деякої кінцевої підмножини множини .
Визначення 16.
Система замикань називається алгебраїчної, якщо тільки відповідний оператор замикання є алгебраїчним
Слід зазначити теорему про взаємозв'язок між системами замикань і операторами замикань.
Теорема 5.
Кожна система замикань E на множині
визначає оператор замикання J на за правилом J(X) = ∩{Y E | Y X}. Обернено, кожний оператор замикання J на визначає систему замикань E J .Наступна теорема показує зв'язок транзитивного відношення залежності й алгебраїчного оператора замикання.
Теорема 6.
Для будь-якого транзитивного відношення залежності Z відображення є алгебраїчним оператором замикання на А із властивістю заміщення.
Обернено, будь-який алгебраїчний оператор замикання на А із властивістю заміщення виходить таким способом з деякого транзитивного відношення залежності Z на А.
Доказ:
Будемо називати підмножину Т множини A замкнутим, якщо .
Покажемо спочатку, що замкнуті підмножини утворять систему замикань. Якщо
, де - сімейство замкнутих множин, то нехай - така незалежна підмножина множини B, що залежно; оскільки для всіх , маємо , звідки , тобто В замкнуто.Нехай
, те по визначенню 3 Z кінцеве, таке що залежно. У першому випадку , а в другому . І оскільки замкнуто в силу транзитивності, одержуємо алгебраїчний оператор замикання.