Цим доведено, що замкнуті підмножини утворять алгебраїчну систему замикань.
Виконання властивості заміщення потрібне з відповідної властивості просторів залежності.
Обернено, нехай
- алгебраїчний оператор замикання із властивістю заміщення.Будемо вважати залежним, якщо для деякого , і незалежним у противному випадку.
Тому що оператор алгебраїчний, то звідси випливає, що всяка залежна множина має кінцеву залежну підмножину, і оскільки очевидно, що всяка множина, що містить залежну підмножину, саме залежно, у такий спосіб одержуємо відношення залежності. Умова транзитивності виконується по визначенню, і це показує, що ми маємо транзитивне відношення залежності.
Тепер для будь-яких
, маємо тоді й тільки тоді, коли для деякої кінцевої підмножини множини . Вибираючи мінімальним, можемо припускати, що незалежно. Звідси випливає, що й, отже, .Обернено, якщо
, те знову для деякої кінцевої незалежної підмножини множини . Це означає, що залежно, тобто для якогось .У силу властивості заміщення одержуємо, що
й , тому .Зауваження. Існують алгебраїчні оператори замикання, що не володіють властивістю заміщення. Для приклада візьмемо нескінченну циклічну напівгрупу
.Нехай
і . Тоді , , але .5. Матроїди
Поняття матроїда тісно пов'язане з поняттям відносини залежності, тому ця тема розглядається в даній кваліфікаційній роботі. Однак з іншої сторони воно є теоретичною основою для вивчення й аналізу «жадібних» алгоритмів.
Визначення 17.
Матроїдом називається кінцева множина й сімейство його підмножин , таке що виконується три аксіоми:
М1: ;
М2: ;
М3:
Визначення 18.
Елементи множини називаються незалежними, а інші підмножини - залежними множинами.
Відповідно до уведеного раніше аксіомами простору залежності бачимо, що матроїди - це в точності кінцеві транзитивне простори залежності.
Розглянемо наступні приклади матроїдів:
Приклад 1.
Сімейство всіх лінійно незалежних підмножин будь-якої кінцевої множини векторів довільного непустого векторного простору є матроїдом.
Дійсно, по визначенню можна вважати, що порожня множина лінійно незалежно. Усяка підмножина лінійно незалежної підмножини векторів лінійно незалежно. Нехай
і - лінійно незалежні множини. Якби всі вектори із множини виражалися у вигляді лінійної комбінації векторів із множини , то множина була б лінійно залежним. Тому, серед векторів множини є принаймні один вектор , що не входить у множину й не виражається у вигляді лінійної комбінації векторів із множини . Додавання вектора до множини утворить лінійно незалежна множина.Приклад 2.
Вільні матроїди. Якщо
- довільна кінцева множина, то - матроїд. Такий матроїд називається вільним. У вільному матроїді кожна множина незалежно, А є базисом і .Приклад 3.
Матроїд трансверсалей. Нехай
- деяка кінцева множина, і - деяке сімейство підмножин цієї множини. Підмножина називається часткової трансверсалью сімейства , якщо містить не більш ніж по одному елементі кожної підмножини із сімейства . Часткові трансверсали над утворять матроїд на А.Перейдемо до розгляду жадібного алгоритму. Для початку потрібно сформулювати задачу, що будемо вирішувати з його використанням.
Нехай є кінцева множина
, , вагова функція й сімейство .Розглянемо наступну задачу: знайти
, де . Інакше кажучи, необхідно вибрати в зазначеному сімействі підмножина найбільшої ваги.Не обмежуючи спільності, можна вважати, що
Розглянемо такий алгоритм, що вихідними даними має множину
, сімейство його підмножин і вагарню функцію , причому множина впорядкована в порядку убування ваг елементів. Після виконання цього алгоритму ми одержимо підмножину .