Смекни!
smekni.com

Оптимальное планирование работы флота судоходной компании (стр. 2 из 2)

2.1 Построение возможных вариантов схем движения судов

На основе заданных участков работы флота (груженных и балластных) строим возможные варианты замкнутых схем движения судов.

Под схемой движения j (j=1,n) понимается набор участков работы флота, последовательно проходимых судном.

Николаев 1 Мадрас 2 Николаев

1) (1;2)

Николаев 3 Басра 4 Николаев

2) (3;4)

Николаев 3 Басра 5 Мадрас 2 Николаев

3) (3;2)

Николаев 3 Басра 6 Николаев

4) (3)

2.2 Расчет нормативов работы судов на схемах движения

Для полученных схем движения рассчитываем следующие нормативы:

а) время рейса i-того судна на j-той схеме движения, в сутках:

__ __

tij = Σ til (i=1,m; j=1,n),

lεj

где tij - время рейса i-того судна на j-той схеме движения, сут.,

til - норматив времени работы i-го типа на l-ом участке, сут., который включает валовое стояночное время в порту погрузки, валовое время перехода на участке и валовое стояночное время в порту выгрузки.

t11 = tх11 + tст11 + tх12 + tст12 ,

где tх - ходовое время, сут.;

tст – стояночное время, сут.

t11 = 14 + 58 + 14+ 40 = 126 сут.

Результаты расчета для остальных типов судов и схем движения занесены в табл.2.1.

Таблица 2.1. Время рейса судов

Схемы 1 2 3 4
Тип судна 1 2 1 2 1 2 1 2
Время работы tij , сут. 126 94 128 114 125 109 78 68

7

б) инвалютный доход судна i-того типа на j-той схеме движения за один рейс, долл.:

__ __

Fij = Σ fl qil (i=1,m; j=1,n),

lεj

где fl – тарифная ставка на l-ом участке, долл./т;

qil – загрузка судна i-го типа на l-ом участке, т.

F11 = f1*q11 + f2*q12 ;

F11 = 12*30 + 10*28 = 640 долл.

Результаты расчета для остальных типов судов и схем движения занесены в табл.2.2.

Таблица 2.2. Время рейса судов

Схемы 1 2 3 4
Тип судна 1 2 1 2 1 2 1 2
Инвалютный доход Fij , долл. 640 404 454 276 514 380 234 156

2.3 Составление математической модели задачи

Параметром управления в данной задаче выступает число рейсов судов i-того типа на j-той схеме движения, так как критерий оптимизации – максимизация доходов.

Математическая модель задачи в общем виде такова:

m n

Z = Σ Σ Fij xij – max, (1)

i=1 j=1

m __

Σ Σ qil xij ≤ Ql (l = 1,S), (2)

i=1 jεGl

n ___

Σ tij xij = Ti (i = 1,m), (3)

j=1

__ __

xij ≥ 0 (i=1,m; j=1,n), (4)

где xij – число рейсов судов i-того типа на j-той схеме движения, судо-рейсы;

Ti – бюджет времени в эксплуатации судов i-того типа, судо-сутки;

___

Ti = Ni Tпл (i = 1,m),

где Ni - число судов i-того типа;

Tпл – продолжительность планового периода;

T1 = 395*8 = 2920 сут.,

T2= 395*6 = 2190 сут.;

Ql - количество груза, предъявленное к перевозке на l-ом участке, тыс.т;

Gl - множество схем движения, содержащих l-й участок;

S – количество груженых участков.

Экономический смысл целевой функции (1) – максимизировать доход в инвалюте; ограничения (3) отражают требование использования бюджета времени в эксплуатации судов всех типов на перевозках; ограничения (2) отражают требование: на каждом участке перевезти груз в количестве, не превышающем заявленного; (4) – условие неотрицательности переменных.

8

Математическая модель согласно исходным данным и построенным вариантам схем движения приобретает вид:

Z = F11x11 + F12 x12 + F13 x13 + F14 x14 + F21 x21 + F22x22 + F23 x23 + F24 x24 – max,

q11 x11 + q21 x21 ≤ Q1

q12 x11 + q12 x13 + q22 x21 + q22 x23 ≤ Q2

q13 x11 + q13 x13+ q13 x14 + q23 x22 + q23 x23 + q23 x24 ≤ Q3

q14 x12 + q24 x22 ≤ Q4

t11 x11 + t12 x12 + t13 x13 + t14 x14 = T1

t21 x21 +t22 x22 + t23 x23 + t24 x24 = T2

__ __

xij ≥ 0 (i=1,m; j=1,n).

Для получения математической модели, используемой при составлении исходной симплексной таблицы, подставляем в приведенную выше математическую модель значения нормативов, полученные ранее:

Z = 640x11 + 454x12 + 514x13 + 234x14 + 404x21 + 276x22 + 380x23 + 156x24 – max,

12x11 + 6x21 ≤ 240

10x11 + 10x13 + 8x21 + 8x23 ≤ 300

9x11 + 9x13+ 9x14 + 6x22 + 6x23 + 6x24 ≤ 160

11x12 + 6x22 ≤ 100

126x11 + 128x12 + 125x13 + 78x14 = 2920

94x21 +114x22 + 109x23 + 68x24 = 2190

__ __

xij ≥ 0 (i=1,2; j=1,4).

9

3. Нахождение оптимального плана работы флота и оптимальных схем движения судов с помощью симплекс метода.

Данная задача решается с помощью симплекс-метода, однако структурные ограничения не содержат нужного для построения базиса количества единичных векторов. Поэтому введем в математическую модель искусственные переменные, чтобы перейти от исходной задачи к расширенной. Таким образом, математическая модель примет вид:

Z = 640x11 + 454x12 + 514x13 + 234x14 + 404x21 + 276x22 + 380x23 + 156x24 + 0S1 +0S2 + 0S3 + 0S4 – MA5 – MA6 - max,

12x11 + 6x21 + S1 = 240

10x11 + 10x13 + 8x21 + 8x23 +S2 = 300

9x11 + 9x13+ 9x14 + 6x22 + 6x23 + 6x24 + S3 +160

11x12 + 6x22 + S4 = 100

126x11 + 128x12 + 125x13 + 78x14 +A5 = 2920

94x21 +114x22 + 109x23 + 68x24 +A6 = 2190

__ __

xij ≥ 0 (i=1,m; j=1,n).

где S1,S2 ,S3 ,S4 – дополнительные переменные;

A5 ,A6 - искусственные переменные.

На основе полученной математической модели задачи составляем исходную симплексную таблицу. Результаты занесены в табл.3.1.

11

Оптимальный план задачи найден с помощью ППП «ПЭР». Результаты решения занесены в табл.3.2.

Таблица 3.2 Оптимальный план

Экономический смысл полученных данных таков:

x11 – количество рейсов, которое сделало судно первого типа на первой схеме движения;

x12 – количество рейсов, которое сделало судно первого типа на второй схеме движения;

x14 – количество рейсов, которое сделало судно первого типа на четвертой схеме движения;

x21 – количество рейсов, которое сделало судно второго типа на первой схеме движения;

x23 – количество рейсов, которое сделало судно второго типа на третьей схеме движения;

S3 – количество груза, которое не было перевезено судами обоих типов на третьем участке работы флота (Николаев – Басра), тыс.т.

В результате решения задачи мы получили оптимальные схемы движения:

Николаев 1 Мадрас 2 Николаев 1. «Герои панфиловцы»

1) 2. «Ленинская Гвардия»

Николаев 3 Басра 4 Николаев

2) «Герои панфиловцы»

Николаев 3 Басра 5 Мадрас 2 Николаев

3) «Ленинская гвардия»

Николаев 3 Басра 6 Николаев

4) «Герои панфиловцы»

12

4. Расчет основных плановых показателей работы флота

Для полученного оптимального плана рассчитываем следующие показатели работы флота.

Время работы судов i-того типа на j-той схеме движения, в сутках.

__ __

tij = Σ til (i=1,m; j=1,n),

lεj

t11 = 14 + 58 + 14+ 40 = 126 сут.

Результаты расчета для остальных типов судов и схем движения занесены в табл.4.1.

Таблица 4.1 Время работы судов

Схемы 1 2 3 4
Тип судна 1 2 1 2 1
Время работы tij , сут. 126 94 128 109 78
Общее время работы, сут. 535

Количество груза перевозимого судами i-того типа на j-той схеме движения и в целом по флоту.

__ __

Qij = Σ qil* xij (i=1,m; j=1,n),

lεj

где Qij – количество груза, перевозимое судном i-того типа на j-той схеме движения за плановый период, тыс.т.

Q11 = q11* x11 + q12* x11,

Q11 = 12*12,2 + 10*12,2 = 268,4 тыс.т

Результаты расчета для остальных типов судов и схем движения занесены в табл.4.2.

Таблица 4.2 Количество груза, перевозимое судами

Схемы 1 2 3 4
Тип судна 1 2 1 2 1
Количество груза Qjj, перевозимое судами, тыс.т 268,4 218,4 182 93,8 25,2
Общее количество груза, перевозимое за плановый период, тыс.т 787,8

Инвалютный доход, полученный судами i-того типа на j-той схеме движения и в целом по флоту.

Fijґ = Fij xij (i=1,m; j=1,n),

где Fijґ - доход, полученный судном i-того типа на j-той схеме движения за плановый период, долл.

F11ґ = F11x11,

F11ґ = 640*12,2 = 7808 долл.

Результаты расчета для остальных типов судов и схем движения занесены в табл.4.3.

13

Таблица 4.3 Инвалютный доход судов

Схемы 1 2 3 4
Тип судна 1 2 1 2 1
Инвалютный доход Fijґ , долл. 7808 6302,4 4131,4 2546 655,2
Суммарный инвалютный доход, долл. 21443

Расходы в инвалюте судов i-того типа на j-той схеме движения и в целом по флоту.

Rij = 0.3 Fijґ (i=1,m; j=1,n),

где Rij – расходы судов i-того типа на j-той схеме движения за плановый период, долл.

R11 = 0.3F11,

F11ґ = 0.3*7808 = 2342.4 долл.

Результаты расчета для остальных типов судов и схем движения занесены в табл.4.5.

Таблица 4.5 Расходы в инвалюте

Схемы 1 2 3 4
Тип судна 1 2 1 2 1
Расходы Rij , долл. 2342,4 1890,7 1239,4 763,8 196,6
Суммарные расходы, долл. 6432,9

Чистый валютный доход, полученный судами i-того типа на j-той схеме движения и в целом по флоту.

ΔFijґ = Fij ґ - Rij (i=1,m; j=1,n),

где ΔFijґ - чистый валютный доход, полученный судном i-того типа на j-той схеме движения за плановый период, долл.

ΔF11ґ = F11ґ -R11,

ΔF11ґ = 7808 – 2342.4 = 5465.6 долл.

Результаты расчета для остальных типов судов и схем движения занесены в табл.4.5.

Таблица 4.5Чистый инвалютный доход судов

Схемы 1 2 3 4
Тип судна 1 2 1 2 1
Чистый инвалютный доход ΔFijґ , долл. 5465,6 4411,7 2892 1782,2 458,6
Суммарный чистый инвалютный доход, долл. 15010,1

Таким образом, показатели работы флота в совокупности с оптимальными схемами движения дают полное представление о возможностях работы флота судоходной компании и тем самым позволяют определить перспективы работы флота. Итак, мы можем говорить о том, что цель данной работы достигнута.

14

Список литературы:

1. Транспорт Украины. Под ред. Денисова В.Г. – Одесса: Судоходство, 1997.

2.Порты мира. Рекламбюро ММФ. М., 1973 – 1983.

3. Fairplay. Port Guide 2001-2002. Edited by Fielder R. Fairplay Publication, 2000.

4. Рег. СССР Регистровая книга морских судов СССР, 1980 – 1981.

5. Воевудский Е.Н. и др. Экономико-математические методы и модели в управлении морским транспортом. – М: Транспорт, 1989.