9) Проверить, что
Это выражение верно, так как согласно
не существует элемента , который не входил бы в . Следовательно, для , . Обратное не верно.10) Проверить тождество
Решение. Построим диаграмму Эйлера для левого множества в четыре этапа.
Диаграмма для множества | Диаграмма для множества |
Диаграмма для множества | Диаграмма для множества |
Диаграммы Эйлера показывают, что тождество выполняется. Докажем это. Используя основные тождества алгебры множеств, преобразуем левую и правую части к одному множеству.
Преобразуем отдельно первое и второе множества.