Смекни!
smekni.com

Алгебра логики (стр. 2 из 2)

При этом под высказываниями понимается всякое предложение, относительно которого можно утверждать, что оно истинно или ложно.

Например:

В=<один плюс один - два>

есть истинное высказывание.

Рассмотрим, какое смысловое содержание можно вложить в некоторые сложные высказывания на примере ФАЛ 2-х аргументов.

Инверсия

Читается НЕ Х или Х с чертой, отрицание Х.

Возьмем, например, такое высказывание: А=<Киев-столица Франции>, тогда сложное высказывание НЕ А означает: не верно, что А, т.е. не верно, что <Киев-столица Франции>.

Из простых высказываний можно строить более сложные, применяя так называемые связи.

Логические связи – это ФАЛ, аргументами которых являются простые высказывания.

Конъюнкция

Возьмем 2 высказывания:

А=<Москва – столица РФ>В=<дважды два - четыре>

тогда сложное высказывание: А & В будет истинным, так как истинны оба этих высказывания.

Поскольку таблица истинности для конъюнкции совпадает с таблицей умножения, если истинному высказыванию приписать значение '1', а ложному - '0', то сложное высказывание можно назвать произведением.

X1 X2 f1(X1,X2)
0 0 0
0 1 0
1 0 0
1 1 1

Функция конъюнкции истинна тогда, когда истинны одновременно оба высказывания.

Дизъюнкция

Это сложное высказывание истинно тогда, когда истинно хотя бы одно высказывание, входящее в него.

X1 X2 f1(X1,X2)
0 0 0
0 1 1
1 0 1
1 1 1

Читается X1 ИЛИ X2: Некоторое отличие от смысла союза "или", принятого в русском языке: в данном случае этот союз употребляется в смысле объединения, а не разъединения.

Логическая равнозначность

Это сложное высказывание истинно тогда, когда истинны или ложны одновременно оба высказывания.

Отсюда следует, что вне зависимости от смысла, равнозначными являются как истинные, так и ложные высказывания.

Например,

А=<дважды два - пять>B=<один плюс два - шесть>А~В равнозначны.
Импликация

Это сложное высказывание ложно только тогда, когда X1 – истинно, а X2 – ложно.

X1 X2 f1(X1,X2)
0 0 1
0 1 1
1 0 0
1 1 1

Читается: если X1, то X2. При этом X1 – посылка, X2 – следствие.

Если посмотреть на таблицу истинности, то может показаться странным название этой функции, т.к. из него следует, что истинным может быть высказывание, составленное из двух ложных.

Но в действительности, все верно, т.к. содержанием высказываний в алгебре логики не интересуются.

Тогда из ложной посылки может следовать ложное следствие и это можно считать верным: <если Киев – столица Франции>, то <2-квадрат 3>.

Эквивалентности

В некоторых случаях сложное и длинное высказывание можно записать более коротким и простым без нарушения истинности исходного высказывания. Это можно выполнить с использованием некоторых эквивалентных соотношений.

Дизъюнкция:

х
х
х
х
...
х
х
х= х,

т.е. истинность высказывания не изменится, если его заменить более коротким, таким образом, это правило приведения подобных членов:

– постоянно истинное высказывание.

0

x = x

x1

x2 = x2
x1

- (переместительный) коммуникативный закон.

x1

х2
х3 = (x1
х2)
х3 = x1
2
х3)

- сочетательный закон.

Конъюнкция:

х

х
х
х...
х
х
х= х

правило приведения подобных членов:

- постоянно ложное высказывание

- постоянно ложное высказывание
Сложение по mod 2
1

при нечетном числе членов, 0 - при четном числе членов

Правило де Моргана


Докажем для двух переменных с помощью таблицы истинности:

Х1 Х2
1
2
0 0 1 1
0 1 1 1
1 0 1 1
1 1 0 0

Операция поглощения:

Х

XY = X

или в общем виде

X

X*f(X,Y,Z...) = X;

Операция полного склеивания:

(по Y)
(по Х)

Операция неполного склеивания: