лежит в
. Таким образом, начиная с элемента , мы имеем арифметическую прогрессию в точности из элемента, лежащих в идеале , причем первый и последний элементы отличаются на . Прибавляя к каждому из этих элементов, начиная с , число , мы получим следующие элементов этой же прогрессии. Такую процедуру можно повторять сколь угодно долго, получая элементы прогрессии, очевидно, лежащие в идеале . Показали, что, по крайней мере, с числа все элементы идеала образуют арифметическую прогрессию.Следствие 1. Пусть
‒ произвольный идеал полукольца . Существует такое конечное множество элементов из , что является главным идеалом.Следствие 2. Если система образующих идеала
полукольца состоит из взаимно простых в совокупности чисел, то, начиная с некоторого элемента, все последующие натуральные числа будут принадлежать идеалу .Замечание. Пусть
, и . Между идеалами и , порожденными системами образующих и соответственно, существует простая связь, а именно: состоит из всех элементов идеала , умноженных на число . Тем самым, изучение идеалов полукольца натуральных чисел сводится к идеалам с взаимно простой системой образующих. В дальнейшем будем считать, что образующие идеала в совокупности взаимно просты и занумерованы в порядке возрастания.Теорема 3. В полукольце
всякая строго возрастающая цепочка идеалов обрывается.Доказательство. Пусть
‒ возрастающая цепочка в . Тогда ‒ конечно порожденный идеал с образующими . Каждый лежит в некоторых идеалах из цепочки, значит, найдется идеал из цепочки, содержащий все элементы . Получаем , следовательно, ‒ последний идеал в нашей цепочке.Из доказанной теоремы делаем вывод о том, что исследуемое полукольцо натуральных чисел является нетеровым.
1.2 Описание идеалов в
Определение 6. Собственный идеал Pкоммутативного полукольца S называется простым, если
или для любых идеалов A и B.Теорема A. Если S – коммутативное полукольцо, то идеал P прост тогда и только тогда, когда
влечет [6].Простыми идеалами в
являются, очевидно, нулевой идеал и идеалы p . Идеал, порожденный составным числом, не может быть простым. Более того, если составное число n=ab является элементом системы образующих идеала I, то элементы a,b не лежат в идеале I, и следовательно, I не прост. Таким образом, система образующих простого идеала может состоять только из простых чисел.Пусть P – простой идеал в
, не являющийся главным, и ‒ элементы из его системы образующих. Поскольку и взаимно просты, то по второму следствию теоремы 2 все натуральные числа, начиная с некоторого, лежат в идеале P. Значит, P содержит некоторые степени чисел 2 и 3. В силу простоты идеала P, 2 и 3 будут лежать в P. Идеал, порожденный числами 2 и 3, является единственным простым идеалом, не являющимся главным.Таким образом, простыми идеалами полукольца
являются следующие идеалы, и только они:1. нулевой идеал;
2. главные идеалы, порожденные произвольным простым числом;
3. двухпорожденный идеал (2,3).
Определение 7. Собственный идеал M полукольца S называется максимальным, если
влечет или для каждого идеала A в S.Теорема Б. Максимальный идеал коммутативного полукольца прост.[6]
В
нулевой идеал и идеалы, порожденные произвольным простым числом, не являются максимальными, так как включены в идеал (2,3), который не совпадает с ними и с . Таким образом, максимальным является двухпорожденный идеал (2,3) – наибольший собственный идеал в .