Множество простых идеалов можно упорядочить следующим образом:
Здесь наибольшим элементом является двухпорожденный идеал (2,3), а наименьшим – нулевой идеал.
Определение 8. Идеал I полукольца S называется полустрогим, если
влечетТеорема 6. Полустрогий идеал полукольца
в точности является главным идеалом.Доказательство. Главные идеалы, очевидно, являются полустрогими. Предположим, что в системе образующих полустрогого идеала может быть больше двух образующих. Пусть два элемента m и n – наименьшие в системе образующих идеала, и
Рассмотрим равенство m+x=n, в нем x очевидно меньше, чем n. Это означает, что x принадлежит идеалу только в том случае, когда элемент x представим в виде x=ms, где . Тогда n линейно выражается через m, а противоречит тому, что m и n – образующие.Множество полустрогих идеалов можно упорядочить следующим образом:
Здесь наибольшим является идеал, порожденный 1, на уровень ниже его находятся идеалы, порожденные простыми числами, еще ниже – порожденные произведением двух простых чисел, дальше трех и так далее.
Определение 9. Идеал I полукольца S называется строгим, если
влечет иCтрогий идеал обязательно является полустрогим, а в полукольце
и главным. Идеалы (0) и (1), очевидно, являются строгими. В любых других главных идеалах их образующие можно представить в виде суммы 1 и числа, на 1 меньше образующей, и оба этих слагаемых не будут принадлежать I. Таким образом, строгими идеалами полукольца являются только (0) и (1).Глава 2. Константа Фробениуса
В теории полугрупп есть понятие константы Фробениуса, им описывается для аддитивной полугруппы, порожденной линейной формой с натуральными коэффициентами, переменные которой независимо принимают целые неотрицательные значения, наибольшее целое число, не являющееся значением указанной формы [4]. Для полукольца
это понятие является неразрывно связанным с элементом , а именно, они отличаются на 1: константа Фробениуса есть наибольший элемент полукольца, не являющийся элементом идеала, а с – наименьший, начиная с которого все элементы полукольца лежат в идеале.Лемма 1. Пусть
. Тогда для любого натурального найдутся такие целые и , что .Доказательство. Пусть
для некоторых целых . Тогда . По теореме о делении с остатком , где . Отсюда . Взяв , получаем доказываемое утверждение.Теорема 7. Если
‒ двухпорожденный идеал и , тоДоказательство. Покажем, что для любого целого
элементы лежат в идеале . Действительно, из предыдущей леммы для подходящих . ТогдаЗаметим, что
, откуда . Таким образом, начиная с , все числа лежат в идеале . Осталось показать, что . Предположим, что лежит в , т.е. для некоторых . Очевидно, что мы может выбрать таким образом, чтобы выполнялось . Тогда . В силу взаимной простоты образующих получаем , откуда . Это возможно только в том случае, когда . Но это влечет , противоречие.На XIV Международной олимпиаде по математике, прошедшей в 1984 году, для решения предлагалась задача следующего содержания:
Пусть a,b,c – целые положительные числа, каждые два из которых взаимно просты. Докажите, что наибольшее из целых чисел, которые не представимы в виде xbc+yca+zab (где x,y,z – неотрицательные целые числа), равно 2abc-ab-bc-ca[1].
В незначительной переформулировке эта задача предлагает показать, чему равна константа Фробениуса для идеала, порожденного системой образующих (ab,ac,bc) в полукольце
.Удалось найти другое решение этой задачи, а также сделать обобщение.
Теорема 8. Если a, b и с попарно взаимно просты, то
.Доказательство. Рассмотрим
. По теоремам 2 и 5 . Значит, начиная с элемента все элементы вида где Заметим, что Из условия следует, что тогда ‒ полная система вычетов по модулю a, обозначим ее (*).Рассмотрим число
Числа
можем получить из системы вычетов (*), прибавляя к ним значит, все они лежат в идеале I. Число так как а Таким образом, нашли a подряд идущих чисел, принадлежащих идеалу I, и число перед ними, не принадлежащее I. Производя подстановку и преобразовывая выражение получаем искомый элемент с.Обобщим результат, полученный в теореме 8: