Множество простых идеалов можно упорядочить следующим образом:
Здесь наибольшим элементом является двухпорожденный идеал (2,3), а наименьшим – нулевой идеал.
Определение 8. Идеал I полукольца S называется полустрогим, если
Теорема 6. Полустрогий идеал полукольца
Доказательство. Главные идеалы, очевидно, являются полустрогими. Предположим, что в системе образующих полустрогого идеала может быть больше двух образующих. Пусть два элемента m и n – наименьшие в системе образующих идеала, и
Множество полустрогих идеалов можно упорядочить следующим образом:
Здесь наибольшим является идеал, порожденный 1, на уровень ниже его находятся идеалы, порожденные простыми числами, еще ниже – порожденные произведением двух простых чисел, дальше трех и так далее.
Определение 9. Идеал I полукольца S называется строгим, если
Cтрогий идеал обязательно является полустрогим, а в полукольце
Глава 2. Константа Фробениуса
В теории полугрупп есть понятие константы Фробениуса, им описывается для аддитивной полугруппы, порожденной линейной формой с натуральными коэффициентами, переменные которой независимо принимают целые неотрицательные значения, наибольшее целое число, не являющееся значением указанной формы [4]. Для полукольца
Лемма 1. Пусть
Доказательство. Пусть
Теорема 7. Если
Доказательство. Покажем, что для любого целого
Заметим, что
На XIV Международной олимпиаде по математике, прошедшей в 1984 году, для решения предлагалась задача следующего содержания:
Пусть a,b,c – целые положительные числа, каждые два из которых взаимно просты. Докажите, что наибольшее из целых чисел, которые не представимы в виде xbc+yca+zab (где x,y,z – неотрицательные целые числа), равно 2abc-ab-bc-ca[1].
В незначительной переформулировке эта задача предлагает показать, чему равна константа Фробениуса для идеала, порожденного системой образующих (ab,ac,bc) в полукольце
Удалось найти другое решение этой задачи, а также сделать обобщение.
Теорема 8. Если a, b и с попарно взаимно просты, то
Доказательство. Рассмотрим
Рассмотрим число
Числа
Обобщим результат, полученный в теореме 8: