Министерство образования и науки РФ
Государственное образовательное учреждение высшего профессионального образования
Вятский государственный гуманитарный университет
Физико-математический факультет
Кафедра высшей математики
Выпускная квалификационная работа
Строение идеалов полукольца натуральных чисел
Выполнила студентка V курса
физико-математического факультета
Вахрушева Ольга Валерьевна
Научный руководитель: д.ф-м.н., профессор кафедры высшей математики Чермных В. В. Рецензент: д.ф-м.н., профессор, заведующий кафедрой высшей математики Вечтомов Е.М.
Киров 2010
Введение
Глава 1. Структура идеалов в
1.1 Базовые понятия и факты
1.2 Описание идеалов в
Глава 2. Константа Фробениуса
Библиографический список
Приложение 1. Примеры работы программы "FindC" для различных исходных данных
Приложение 2. Описание алгоритма работы программы с помощью блок-схем
Приложение 3. Полный текст программы "FindC"
Введение
Теория полуколец – один из интенсивно развивающихся разделов общей алгебры, являющийся обобщением теории колец. Весомый вклад в ее изучение и развитие внесли Е.М. Вечтомов и В.В. Чермных. Большой интерес для изучения представляет собой полукольцо натуральных чисел с обычными операциями сложения и умножения. Его роль в теории полуколец примерно такая же, как и кольца
целых чисел в теории колец. Вопросу строения полукольца натуральных чисел посвящена глава в книге В.В. Чермных "Полукольца" [6].Целью данной квалификационной работы является исследование полукольца натуральных чисел и его строения. Более точно выясняется вопрос, как устроены идеалы этого полукольца, а также осуществляется отыскание либо определение границ расположения константы Фробениуса для некоторых идеалов.
Выпускная квалификационная работа состоит из двух глав. В главе 1 представлены основные определения и теоремы, связанные с полукольцом натуральных чисел, и дано описание его идеалов. Глава 2 посвящена исследованию проблемы нахождения константы Фробениуса.
Глава 1. Структура идеалов в
1.1 Базовые понятия и факты
Определение 1. Непустое множество S с бинарными операциями "+" и "×" называется полукольцом, если выполняются следующие аксиомы:
1. (S, +) - коммутативная полугруппа с нейтральным элементом 0;
2. (S, ×) - полугруппа с нейтральным элементом 1;
3. умножение дистрибутивно относительно сложения:
a(b + c) = ab + ac, (a + b)c = ac + bc длялюбых a, b, c Î S;
4. 0a = 0 = a0 длялюбого aÎ S.
По этому определению полукольцо отличается от ассоциативного кольца с единицей отсутствием операции вычитания, и именно это вызывает основные трудности при работе с полукольцами.
Несложно показать, что множество натуральных чисел
с обычными операциями сложения и умножения при допущении, что , является полукольцом.Определение 2. Непустое подмножество I полукольца S называется левым идеалом полукольца S, если для любых элементов
элементы a+b и sa принадлежат I. Симметричным образом определяется правый идеал. Непустое подмножество, являющееся одновременно левым и правым идеалом, называется двусторонним идеалом или просто идеалом полукольца S.В силу коммутативности операции умножения в полукольце
все идеалы являются двусторонними, в дальнейшем будем называть их просто идеалами.Идеал, отличный от полукольца S, называется собственным.
Определение 3. В полукольце S наименьший из всех идеалов, содержащих элемент
, называется главным идеалом, порожденным элементом a.Известно, что кольцо целых чисел
является кольцом главных идеалов. Идеалы в не обязательно являются главными, но все они конечно порождены. Главные идеалы в будем обозначать aN, где a – элемент, порождающий идеал.Определение 4. Идеал
коммутативного полукольца называется конечно порожденным, если найдется конечное множество элементов таких, чтоТеорема 1. Произвольный идеал полукольца натуральных чисел конечно порожден.
Доказательство. Пусть
– произвольный идеал из , – его наименьший ненулевой элемент. Выберем, если возможно, наименьший элемент из N. В общем случае на очередном шаге будем выбирать наименьший элемент из множества . Заметим, что выбираемые элементы обязаны быть несравнимыми по модулю . По этой причине процесс выбора будет конечным, и на некотором шаге получимОпределение 5. Пусть
– идеал полукольца натуральных чисел. Множество элементов из назовем системой образующих идеала, если и никакой элемент системы образующих нельзя представить в виде комбинации с неотрицательными коэффициентами остальных элементов системы.Очевидно, что для любого идеала система образующих определяется однозначно. Множество элементов
, построенное в доказательстве теоремы 1, является системой образующих.Если имеется в виду конкретная система образующих идеала, то будем изображать ее в круглых скобках, например: (2,3)={0,2,3,4,…}=
\{1}.Аналог теоремы Гильберта о базисе, которая утверждает, что если R – коммутативное кольцо, каждый идеал которого конечно порожден, то любой идеал кольца многочленов над R является конечно порожденным, неверна в классе полуколец, и примером тому служит полукольцо
. Как установлено, идеалы в конечно порождены. Покажем, что этим свойством не обладает полукольцо [x]. Пусть I – множество всех многочленов ненулевой степени над . Ясно, что I‒ идеал. Любой из многочленов x, x+1, x+2,…, нельзя нетривиальным образом представить в виде суммы многочленов из I, значит, все эти многочлены необходимо лежат в любой системе образующих идеала I. Таким образом, I не является конечно порожденным, и полукольцевой аналог теоремы Гильберта не верен.Теорема 2. Пусть
‒ система образующих идеала полукольца . Начиная с некоторого элемента , все элементы идеала образуют арифметическую прогрессию с разностью , являющейся наибольшим общим делителем чисел .Доказательство. Пусть
‒ НОД всех представителей системы образующих идеала . По теореме о линейном представлении НОД для некоторых целых . Положим ‒ максимум из абсолютных значений чисел . Тогда элементы и лежат в идеале . Очевидно, что ‒ наименьшее натуральное число, на которое могут отличаться два элемента идеала , и . Обозначим . Пусть , для некоторых целых , и одно из них, допустим , неположительно. В таком случае рассмотрим число с такими достаточно большими натуральными коэффициентами , чтобы для любого целого выполнялось . Тогда для любого такого элемент