Смекни!
smekni.com

Применение операционного исчисления при решении дифференциальных уравнений (стр. 3 из 3)

Тогда

Воспользуемся приложением:

В итоге оригинал равен

4.2. Первая теорема разложения

Теорема. Если изображение искомой функции может быть разложено в степенной ряд по степеням

, т.е.

(причем этот ряд сходится к F( p) при

), то оригинал имеет вид

(причем ряд сходится при всех значениях t ).

§5 Решение задачи Коши для обыкновенных линейных

дифференциальных уравнений с постоянными коэффициентами

Рассмотрим линейное дифференциальное уравнение

где ak–действительные числа.

Требуется найти решение данного дифференциального уравнения, удовлетворяющее начальным условиям

x(0)=x0, x`(0)=x`0, …, x(n-1)(0)=x0(n-1)

где x0, x`0, …, x0(n-1) – заданные числа.

Будем предполагать, что искомая функция x(t), все ее производные, а также функция f (t) являются оригиналами.

Пусть

. По формулам дифференцирования оригиналов

Перейдем от данного дифференциального уравнения к уравнению в изображениях

Перепишем его так

, где
, а

Находим так называемое операторное решение уравнения

Найдя оригинал x(t) по его изображению X(p) , мы получим тем самым решение задачи Коши для исходного дифференциального уравнения.

7. Примеры

Пример 1.

Найти решение дифференциального уравнения x(t)4x(t)5x(t)0,

удовлетворяющее условиям x(0) 0, x(0) 1.

Решение. Запишем уравнение в изображениях

Вынесем Х за скобки

Найдем оригинал используя выведенные ранее значения в таблице приложения:

искомое решение -

Пример 2.

Решить дифференциальное уравнение y`-2y=0, y(0)=1.

Решение

Пример 3.

Решить дифференциальное уравнение y`+y=et, y(0)=0.

Решение

Перейдем к уравнению

Пример 4.

Найти решение уравнения

при начальных условиях y(0)=-1, y`(0)=0.

Решение

Пусть

, тогда
,
.

Тогда

- изображающее уравнение. Отсюда

Оригинал для правого слагаемого известен

, а оригинал для
удобнее найти по теореме свертывания.

Известно, что

, поэтому

Так как

, то

Таким образом,

Пример 5.

Найти общее решение уравнения

.

Решение

Для получения общего решения начальные условия зададим так:

y(0)=C1, y`(0)=C2

Если

, то
,

.

И изображение уравнения имеет вид

Отсюда

Согласно приложению

,

Собирая оригиналы всех слагаемых, представляющих Y(p), получаем искомое решение:

если

.

Пример 6

Операционный метод может быть применён для решения нестационарных задач математической физики. Рассмотрим случай, когда некая функция u(x,t) зависит лишь от пространственной координаты x и времени t.

Для уравнения теплопроводности будем решать краевую задачу:

a2=const, u(x,0)=φ(x) - начальные условия и u(0,t)=ψ1(t), u(l,t)=ψ2(t), 0 ≤ xl – краевые условия.

Пусть все функции являются оригинальными. Обозначим

- изображение по Лапласу.

Тогда

Тогда краевые условия:

Уравнение в изображениях:

Библиографический список.

1. Старков В.Н. Операционное исчисление и его применения. Учебн. пособ.-СПб, 2000.

2. Белослюдова В.В., Дронсейка И.П.Специальные разделы математики.Часть 1. Элементы теории функций комплексной переменной. Операционное исчисление: Курс лекций для студентов второго курса специальностей 050702, 050716 / ВКГТУ. – Усть – Каменогорск, 2006.

3. Данко П.Е., Попов А.Г., Кожевникова Т.Я. Высшая математика в упражнениях и задачах. Часть 2. М., 2005

4. Ершова В.В. Импульсные функции. Функции комплексной переменной. Операционное исчисление. Под ред. В.И. Азаматовой. Минск, 1976

Приложение

Таблица оригиналов и их изображений.

Оригинал Изображение Оригинал Изображение
1
t