к/р № 1
1. Решить матричные уравнения и сделать проверку.
Решение:
Найдём обратную матрицу
Обратной для матрицы А есть матрица
Тогда:
Найдем элементы матрицы А*:
Тогда:
Выполним проверку:
Ответ:
2. Даны координаты точек А, В, С. Найти уравнения сторон треугольника АВС. Найти уравнение одной из медиан треугольника АВС. Найти уравнение одной из высот треугольника АВС. Найти уравнение одной из биссектрис треугольника АВС. Найти площадь треугольника АВС.
Вариант | А | В | С |
19 | (-3;1) | (-1;-3) | (1;3) |
Решение:
Уравнение прямой, проходящей через две точки можно записать как
Тогда:
- уравнение стороны АВ:
- уравнение стороны АС:
- уравнение стороны ВС:
Найдем уравнение медианы ВМ, проведенной к стороне АС. Точка М – середина отрезка АС, следовательно координаты
- уравнение медианы ВМ:
Найдём уравнение высоты АH, проведенной к стороне ВС. Уравнение стороны ВС
- уравнение высоты АН:
Будем искать уравнение биссектрисы угла С.
Прямые АС:
По формуле тангенса разности получаем, что
Половина угла С будет
Тангенс угла наклона биссектрисы к оси ОХ тогда составит:
Уравнение биссектрисы примет вид:
Уравнение биссектрисы CL принимает вид
Для нахождения площади треугольника АВС воспользуемся формулой:
Тогда:
Выполним чертеж:
Ответ: АВ:
ВМ:
СL: - биссектриса треугольника; S = 10 кв.ед.
3. Даны координаты точек А1 ,A2 ,А3 ,A4
Найти длину ребра А1А2. Составить уравнение ребра А1А4 и грани А1А2А3. Составить уравнение высоты опущенной из точки А4 на плоскость А1А2А3. Найти площадь треугольника А1A2A3 . Найти объем треугольной пирамиды А1A2А3A4
N | Координаты точек | |||
Вар | A1 | A2 | A3 | A4 |
2.19 | (8;6;4) | (10;5;5) | (5;6;8) | (8;10;7) |
Решение:
Воспользуемся формулой для вычисления расстояние между двумя точками:
Наши точки А1(8; 6; 4) и A2(10; 5; 5):
Длина ребра А1А2 равна
Составим уравнение прямой проходящей через точки А1(8; 6; 4) и A4(8; 10; 7).
Для этоговоспользуемся уравнением:
Найдем уравнение плоскости, проходящей через точки А1(8; 6; 4), A2(10; 5; 5), А3(5; 6; 8).
Воспользуемся формулой:
Подставим данные:
Т.е. уравнение грани А1А2А3:
Искомая высота проходит через точку A4(8; 10; 7)иперпендикулярна плоскости
Направляющий вектор высоты совпадает с вектором нормали плоскости, к которой проведена высота, следовательно, т.к. каноническое уравнение прямой
Площадь треугольника А1А2А3 можно найти по формуле: