А + 0 = 0 + А = А.
В заключение заметим, что понятие нулевой матрицы можно вводить и для неквадрат-ных матриц (нулевой называют любую матрицу, все элементы которой равныї нулю).
Предположим, что некоторая матрица A = || aij|| при помощи горизонтальных и вертикальных прямых разбита на отдельные прямоугольные клетки, каждая из которых представляет собой матрицу меньших размеров и называется блоком исходной матрицы. В таком случае возникает возможность рассмотрения исходной матрицы А как некоторой новой (так называемой б л о ч н о й) матрицыі А = || Aab||, элементами которой служат указанные блоки. Указанные элементы мы обозначаем большой латинской буквой, чтобы подчеркнуть, что они являются, вообще говоря, матрицами, а не числами и (как обычные числовые элементы) снабжаем двумя индексами, первый из которых указывает номер «блочной» строки, а второй — номер «блочного» столбца.
можно рассматривать как блочную матрицу
элементами которой служат следующие блоки:
Замечательным является тот факт, что основные операции с блочными матрицами совершаются по тем же правилам, по которым они совершаются с обычными числовыми матрицами, только в роли элементов выступают блоки.
Понятие определителя.
Рассмотрим произвольную квадратную матрицу любого порядка п:
A =
(1.7)С каждой такой матрицей свяжем вполне определенную численную характеристику, называемую определителем, соответствующим этой матрице.
Если порядок n матрицы (1.7) равен единице, то эта матрица состоит из одного элемен-та аij определителем первого порядка соответствующим такой матрице, мы назовем величину этого элемента.
Если далее порядок п матрицы (1.7) равен двум, т. е. если эта матрица имеет вид
A =
(1.8)то определителем второго порядка, соответствующим такой матрице, назовем число, равное а11 а22 — а12 а21и обозначаемое одним из символов:
Итак, по определению
(1.9)Формула (1.9) представляет собой правило составления определителя второго порядка по элементам соответствующей ему матрицы. Словесная формулировка этого правила такова: определитель второго порядка, соответствующий матрице (1.8), равен разности произведения элементов, стоящих на главной диагонали этой матрицы, и произведения элементов, стоящих на побочной ее диагонали. Определители второго и более высоких порядков находят широкое применение при решении систем линейных уравнений.
Рассмотрим, как выполняются операции с матрицами в системе MathCad. Простейшие операции матричной алгебры реализованы в MathCad в виде операторов. Написание операторов по смыслу максимально приближено к их математическому действию. Каждый оператор выражается соответствующим символом. Рассмотрим матричные и векторные операции MathCad 2001. Векторы являются частным случаем матриц размерности n x 1,поэтому для них справедливы все те операции, что и для матриц, если ограничения особо не оговорены (например, некоторые операции применимы только к квадратным матрицам n x n). Какие-то действия допустимы только для векторов (например, скалярное произведение), а какие-то, несмотря на одинаковое написание, по-разному действуют на векторы и матрицы.
Рис.1 Панель инструментов Матрицы
Для ввода матрицы:
-введите имя матрицы и знак присваивания (двоеточие)
-щелкните по значку “создать матрицу” в панели “Матрицы”.
-
-После нажатия кнопки OK открывается поле для ввода элементов матрицы. Для того, чтобы ввести элемент матрицы, установите курсор в отмеченной позиции и введите с клавиатуры число или выражение.
Для того, чтобы выполнить какую-либо операцию с помощью панели инструментов, нужно:
-выделить матрицу и щелкнуть в панели по кнопке операции,
-или щелкнуть по кнопке в панели и ввести в помеченной позиции имя матрицы.
Меню “Символы” содержит три операции - транспонирование, инвертирование, определитель.
Это означает, например, что вычислить определитель матрицы можно, выполнив команду Символы/Матрицы/Определитель.
Номер первой строки (и первого столбца) матрицы MathCAD хранит в переменной ORIGIN. По умолчанию отсчет ведется от нуля. В математической записи чаще принято вести отсчет от 1. Для того, чтобы MathCAD вел отсчет номеров строк и столбцов от 1, нужно задать значение переменной ORIGIN:=1.
Функции, предназначенные для работы с задачами линейной алгебры, собраны в разделе “Векторы и матрицы” диалога “вставить функцию” (напоминаем, что он вызывается кнопкой на панели “Стандартные”). Основные из этих функций будут описаны позже.
Транспонирование
Сложение
Умножение
При умножении следует помнить, что матрицу размерностиmxnдопустимо умножать только на матрицу-размерностиnxp(р может быть любым). В результате получается матрица размерности m х р.
Определитель квадратной матрицы