А + 0 = 0 + А = А.
В заключение заметим, что понятие нулевой матрицы можно вводить и для неквадрат-ных матриц (нулевой называют любую матрицу, все элементы которой равныї нулю).
Предположим, что некоторая матрица A = || aij|| при помощи горизонтальных и вертикальных прямых разбита на отдельные прямоугольные клетки, каждая из которых представляет собой матрицу меньших размеров и называется блоком исходной матрицы. В таком случае возникает возможность рассмотрения исходной матрицы А как некоторой новой (так называемой б л о ч н о й) матрицыі А = || Aab||, элементами которой служат указанные блоки. Указанные элементы мы обозначаем большой латинской буквой, чтобы подчеркнуть, что они являются, вообще говоря, матрицами, а не числами и (как обычные числовые элементы) снабжаем двумя индексами, первый из которых указывает номер «блочной» строки, а второй — номер «блочного» столбца.
можно рассматривать как блочную матрицу
элементами которой служат следующие блоки:
Замечательным является тот факт, что основные операции с блочными матрицами совершаются по тем же правилам, по которым они совершаются с обычными числовыми матрицами, только в роли элементов выступают блоки.
Понятие определителя.
Рассмотрим произвольную квадратную матрицу любого порядка п:
A =
С каждой такой матрицей свяжем вполне определенную численную характеристику, называемую определителем, соответствующим этой матрице.
Если порядок n матрицы (1.7) равен единице, то эта матрица состоит из одного элемен-та аij определителем первого порядка соответствующим такой матрице, мы назовем величину этого элемента.
Если далее порядок п матрицы (1.7) равен двум, т. е. если эта матрица имеет вид
A =
то определителем второго порядка, соответствующим такой матрице, назовем число, равное а11 а22 — а12 а21и обозначаемое одним из символов:
Итак, по определению
Формула (1.9) представляет собой правило составления определителя второго порядка по элементам соответствующей ему матрицы. Словесная формулировка этого правила такова: определитель второго порядка, соответствующий матрице (1.8), равен разности произведения элементов, стоящих на главной диагонали этой матрицы, и произведения элементов, стоящих на побочной ее диагонали. Определители второго и более высоких порядков находят широкое применение при решении систем линейных уравнений.
Рассмотрим, как выполняются операции с матрицами в системе MathCad. Простейшие операции матричной алгебры реализованы в MathCad в виде операторов. Написание операторов по смыслу максимально приближено к их математическому действию. Каждый оператор выражается соответствующим символом. Рассмотрим матричные и векторные операции MathCad 2001. Векторы являются частным случаем матриц размерности n x 1,поэтому для них справедливы все те операции, что и для матриц, если ограничения особо не оговорены (например, некоторые операции применимы только к квадратным матрицам n x n). Какие-то действия допустимы только для векторов (например, скалярное произведение), а какие-то, несмотря на одинаковое написание, по-разному действуют на векторы и матрицы.
|
Рис.1 Панель инструментов Матрицы
Для ввода матрицы:
-введите имя матрицы и знак присваивания (двоеточие)
-щелкните по значку “создать матрицу” в панели “Матрицы”.
-
|
-После нажатия кнопки OK открывается поле для ввода элементов матрицы. Для того, чтобы ввести элемент матрицы, установите курсор в отмеченной позиции и введите с клавиатуры число или выражение.
Для того, чтобы выполнить какую-либо операцию с помощью панели инструментов, нужно:
-выделить матрицу и щелкнуть в панели по кнопке операции,
-или щелкнуть по кнопке в панели и ввести в помеченной позиции имя матрицы.
Меню “Символы” содержит три операции - транспонирование, инвертирование, определитель.
Это означает, например, что вычислить определитель матрицы можно, выполнив команду Символы/Матрицы/Определитель.
Номер первой строки (и первого столбца) матрицы MathCAD хранит в переменной ORIGIN. По умолчанию отсчет ведется от нуля. В математической записи чаще принято вести отсчет от 1. Для того, чтобы MathCAD вел отсчет номеров строк и столбцов от 1, нужно задать значение переменной ORIGIN:=1.
Функции, предназначенные для работы с задачами линейной алгебры, собраны в разделе “Векторы и матрицы” диалога “вставить функцию” (напоминаем, что он вызывается кнопкой на панели “Стандартные”). Основные из этих функций будут описаны позже.
Транспонирование
|
Сложение
|
|
|
Умножение
При умножении следует помнить, что матрицу размерностиmxnдопустимо умножать только на матрицу-размерностиnxp(р может быть любым). В результате получается матрица размерности m х р.
|
|
|
Определитель квадратной матрицы