Определитель (Determinant) матрицы обозначается стандартным математическим символом. Чтобы ввести оператор нахождения определителя матрицы, можно нажать кнопкуDeterminant (Определитель) на панели инструментов Matrix (Матрица) (рис. 1) или набрать на клавиатуре <|> (нажав клавиши <Shift>+<\>). В результате любого из этих действий появляется местозаполнитель, в который следует поместить матрицу. Чтобы вычислить определить уже введенной матрицы, нужно выполнить следующие действия:
1. Переместить курсор в документе таким образом, чтобы поместить матрицу между линиями ввода (напоминаем, что линии ввода — это вертикальный и горизон-тальный отрезки синего цвета, образующие уголок, указывающий на текущую область редактирования).
2. Ввести оператор нахождения определителя матрицы.
3. Ввести знак равенства, чтобы вычислить определитель.
Результат вычисления определителя приведен в примере на рис. 9.Модуль вектора
Модуль вектора (vectormagnitude) обозначается тем же символом, что и определитель матрицы. По определению, модуль вектора равен квадратному корню из суммы квадратов его элементов (пример на рис.10).
Скалярное произведение векторов
Скалярное произведение векторов (vectorinnerproduct) определяется как скаляр, равный сумме попарных произведений соответствующих элементов. Векторы должны иметь одинаковую размерность, скалярное произведение имеет ту же размерность. Скалярное произведение двух векторов u иv равно u·v = | u | · | v | · cosj,где j — угол между векторами. Если векторы ортогональны, их скалярное произведение равно нулю. Обозначается скалярное произведение тем же символом умножения (пример на рис.11). Для обозначения скалярного произведения пользователь также может выбирать представление оператора умножения.
Никогда не применяйте для обозначения скалярного произведения символ который является общеупотребительным символом векторного произведения.
С осторожностью перемножайте несколько (более двух) векторов. По-разному расставленные скобки полностью изменяют результат умножения. Примеры такого умножения см. в листинге на рис.12.
Векторное произведение
Векторное произведение(crossproduct) двух векторов u иv с углом a между ними равно вектору с модулем| u | · | v | · sina, направленным перпендикулярно носкости векторов uи v. Обозначают векторное произведение символом х, который можно ввести нажатием кнопкиCrossProduct (Векторное произвение) в панелиMatrix (Матрица) или сочетанием клавиш<Ctrl>+<8>.Пример приведен на рис.13.Задание 1.
Вычислите матрицу 2*A*B-3*C*D, где:
Ответ: