Уточним теперь структуру цепи Маркова
. Обозначим через . Сформулируем и докажем два вспомогательных утверждения, касающихся общей структуры цепи и асимптотического поведения распределения рассматриваемой цепи Маркова при .Лемма 1. Пространство состояний цепи Маркова распадается на незамкнутое множество несущественных состояний и минимально замкнутое множество существенных сообщающихся непериодических состояний.
Доказательство. Из того, что
и для всех , следует что случайный процесс за некоторое конечное число шагов из произвольного состояния с положительной вероятностью по цепочке попадёт в состояние . Следовательно состояние является существенным. Согласно теореме 3.5 из /7/ совокупность состояний цепи, сообщающихся с также является существенным. Используя полученные нами рекурентные соотношения (12)-(18) и приведённые выше замечания нетрудно видеть, что множествоПокажем, что
не содержит других состояний, кроме отмеченных. Возьмём, к примеру, состояние где . Тогда по цепочке переходов цепь Маркова перейдёт из существенного состояния в состояние . Следовательно, состояние является существенным и сообщающимся с . Указанный переход возможен с положительной вероятностью, поскольку и . Аналогично доказывается, что возможен переход из или в любое другое состояние, не принадлежащие множеству . Значит . Поскольку состояние достижимо из любого состояния , то множество не является замкнутым, а содержит единственное замкнутое минимальное . Из очевидного неравенстваследует, что все состояния из будут непериодическими (/8/ стр. 408). Лемма доказана.
Лемма 2. При любом начальном распределении векторной цепи Маркова либо для всех :
и в системе не существует стационарного распределения, либо существуют пределы:
такие, что , и всистеме существует стационарное распределение.
Доказательство. Из структуры множества
и из того, что следует, что векторный случайный процесс из произвольного состояния с положительной вероятностью, не меньшей, чем , за один шаг может достигнуть множества . Обозначим через вероятность того, что рассматриваемая цепь Маркова исходя из произвольного несущественного состояния когда-либо достигнет некоторого существенного состояния из . Известно, что величины , являются решениями системы уравнений вида (8.6), приведённой в /8/ на стр. 392. Тогда, в силу неравенства и леммы 1, эта система является вполне регулярной и имеет ограниченное решение , . В этом можно убедиться непосредсвенной подстановкой. По теореме 11 из /9/ это решение будет единственным. Отсюда на основании эргодической теоремы в главе 15 из /8/ получим утверждение доказываемой леммы.Итак, ассимптотическое поведение одномерного распределения случайного векторного процесса при
не зависит от начального распределения .Заключение.
В конце этой (весьма краткой) работы хочется подвести итог того, что нами было уже сделано:
- Была дана общая характеристика случайной среды, системы управления, приведена её функциональная схема;
- На содержательном уровне дано определение конфликтности и потоков насыщения системы;
- Приведено математическое описание составляющих элементов системы и построен маркированный случайный точечный процесс, моделирующий динамическое поведение системы;
- Была доказана теорема марковости выделенной дискретной компоненты процесса
.- Выведены рекуррентные формулы для одномерных распределений дискретной компоненты маркированного точечного процесса
.Литература.
1. Куделин А.Н. Модель управления конфликтными потоками в случайной среде: “Теория вероятностей и математическая статистика. Диссертация на соискание уч. степени кандидата ф.-м.н”.
2. Бронштейн О.И. Рыков В.В., Об оптимальных дисциплинах обслуживания в управляемых системах // В сборн. "Управление производством", Тр. III Всесоюзн. совещ. по автоматическому управлению. Техническая кибернетика.- 1965.- М.: "Наука", 1967.
3. Рыков В.В. Управляемые системы массового обслуживания // Сборн. "Итоги науки. Теория вероятностей. Математическая статистика. Теоретическая кибернетика. ВИНИТИ АН СССР".
4. Файнберг М.А., Файнберг Е.А. Управление в системах массового обслуживания // "Зарубежная радиоэлектроника".
5. Федоткин М.А. Теория дискретных систем с переменной структурой обслуживания квазигенерирующих потоков : "Теория вероятностей и математическая статистика. Диссертация на соискание уч. степени доктора ф.-м.н.".
6. Федоткин М.А. Неполное описание потоков неоднородных требований. -"Теория массов. обслуж."
7. Чжун К.Л. Однородные цепи Маркова. –М.: Мир, 1964.
8. Феллер В. введение в теорию вероятностей и её приложения. Т.1, - М.: Мир, 1967.
9. Кантарович Л.В., Крылов В.И. Приблежённые методы высшего анализа. – М. –Л.: 'ГИФМЛ', 1962.