Зміст
1. Послідовність незалежних випробувань. Моменти біноміального розподілу
2. Оцінка дисперсії
3. Математична теорія експерименту у техніко-економічних задачах
4. За даними закону розподілу знайти М(х), Д(х), σ(х)
Література
1. Послідовність незалежних випробувань. Моменти біноміального розподілу
Нехай проводяться n випробувань, у кожному з яких подія А може як відбутись, так і не відбутись. Якщо ця ймовірність у кожному випробуванні не залежить від того, відбулась вона в інших випробуваннях чи ні, то такі випробування називаються незалежними щодо події А. Згідно з означенням випробування також незалежні, якщо в кожному з них імовірність настання події А однакова, тобто дорівнює тому самому числу. Імовірність того, що подія А відбудеться в кожному з незалежних випробувань, позначають
а ймовірність настання протилежної подіїДля розв’язування задач на повторні незалежні випробування застосовують такі формули і теореми.
Формула Бернуллі. Імовірність того, що в n незалежних випробуваннях, у кожному з яких імовірність Р(А) = р, подія А відбудеться m раз, подається так:
Формула застосовується, якщо
Найімовірніша кількість. Частота
настання події А в n незалежних повторних випробуваннях називається найімовірнішою кількістю (появи цієї події), якщо їй відповідає найбільша ймовірність. Вона визначається за формулою:Розподіл може мати одне або два найімовірніші числа.
Локальна теорема Лапласа. Імовірність того, що в n незалежних випробуваннях, у кожному з яких Р(А) = р, подія А відбудеться m раз, подається такою наближеною залежністю:
Локальна теорема Лапласа дає змогу обчислювати ймовірності
, якщо n > 10 i p > 0,1.Формула Пусона. Якщо в кожному з n незалежних повторних випробувань
, а n велике, то
Інтегральна теорема Лапласа. Імовірність того, що подія А відбудеться від
до раз при проведенні n незалежних випробувань, у кожному з яких подія А відбувається з імовірністю р, подається формулою: — функція Лапласа;Значення функції Лапласа наводяться у спеціальних таблицях.
Відхилення відносної частоти від імовірності. Імовірність того, що при проведенні n незалежних випробувань відхилення відносної частоти події А від її ймовірності за модулем не перевищить e, визначається за формулою:
Твірна функція. Нехай проводяться n незалежних випробувань, в яких подія А відбувається з імовірністю
Тоді ймовірність настання цієї події m раз визначається за допомогою твірної функції
Якщо перетворити праву частину функції і звести подібні члени, то коефіцієнт при
визначаєУ теорії ймовірностей часто застосовуються деякі закони розподілу випадкових величин. Розглянемо ці розподіли, а також задачі, де вони використовуються.
Біноміальний закон розподілу
Імовірності в цьому законі визначаються за формулою
m = 0,1,2, …, n.
Закон справджується для схеми незалежних повторних випробувань, у кожному з яких подія А настає з імовірністю р. Частота настання події А має біноміальний закон розподілу. Числові характеристики розподілу:
2. Оцінка дисперсії
Оцінка параметра розподілу сукупності
у загальному випадку є випадковою величиною, яка визначається за даними вибірки і використовується замість невідомого значення параметра, який потрібно оцінити.Оцінка називається обґрунтованою, якщо вона збігається за ймовірністю до відповідного параметра при
Оцінка називається незміщеною, якщо її математичне сподівання збігається зі значенням параметра.
У різі вибору з усіх відомих незміщених обґрунтованих оцінок певної оцінки потрібно зазначити критерій, за яким зроблено вибір.
Найчастіше застосовується критерій, який полягає у виборі оцінки, що має найменшу можливу дисперсію. Така оцінка називається ефективною. Нижня межа дисперсії незміщеної оцінки параметра
(яку позначатимемо ), подається формулою:де
— щільність розподілу випадкової величини (для дискретної випадкової величини ).Оцінки параметрів розподілу знаходять методами максимальної правдоподібності і моментів. Метод максимальної правдоподібності полягає ось у чому. Нехай закон розподілу випадкової величини подається через параметр
, який у загальному випадку k-вимірний. Тоді для вибірки спільний закон розподілу подається функцією правдоподібності (запишемо, наприклад, для неперервних величин):За оцінки максимальної правдоподібності параметрів
беруться вибіркові функції, які є розв’язком системи рівнянь:Застосування методу моментів ґрунтується на збіжності (за ймовірністю) статистичних моментів розподілу до відповідних теоретичних моментів розподілу, які в такому разі мають існувати. Як відомо, теоретичні моменти розподілу виражаються через параметри розподілу. Складаємо систему k рівнянь, в якій попарно прирівнюємо відповідні теоретичні і статистичні моменти. Розв’язком цієї системи є оцінки для параметрів розподілу.
Нехай маємо точкову оцінку
параметра . Знайдемо для параметра інтервальну оцінку, скориставшись умовою В такому разі e називається точністю оцінки, а g — її надій- ністю. Тоді інтервальна оцінка (довірчий інтервал) для параметра q набуває вигляду Параметр q — не випадкова величина, надійність g можна розглядати як імовірність того, що випадковий інтервал покриває дійсне значення параметра. Величини тісно зв’язані з обсягом вибірки Якщо задати дві з цих величин, то можна знайти третю. Для цього потрібно знати закон розподілу дляПриклади розв’язування задач
Приклад 1. Вибірку обсягом n зроблено із сукупності, розподіленої за законом Релея
Знайти оцінку для параметра
і перевірити її на незміщеність, обґрунтованість і ефективність.Розв’язання. Застосуємо метод максимальної правдоподібності. Побудуємо функцію правдоподібності, складемо і розв’я жемо рівняння для визначення оцінки: