В единице продукта содержится следующее количество некоторых веществ, эти данные представлены в таблице 1:
Калории | Сахар | Жир | витамины | |
Пирожное | 400 | 2 | 2 | 3 |
Котлета | 200 | 2 | 4 | 2 |
Кола | 150 | 4 | 1 | 0 |
Биг-мак | 500 | 4 | 5 | 0 |
таблица 1
Есть ограничения на вещества в день: Сумма калорий ≥ 500, сумма витаминов ≥ 6, сумма сахара ≥ 10, сумма жира ≥ 8. Надо получить набор, при котором человек будет получать необходимое число веществ, но стоимость этого набора должна быть минимальна.
Предположим, что будет куплено
- пирожных, - котлет, - бутылок колы, - биг-маков, - стоимость пирожных, - котлет, - бутылки колы, - биг-мака.матрица показывающая содержание веществ.
- количество определённого вещества. - вид продукта, - вид вещества.Математическая модель в общем виде:
игде
- минимальное количество вещества в день.Математическая модель для нашей задачи:
Лесничество имеет 24 га свободной земли под паром и заинтересовано извлечь из нее доход. Оно может выращивать саженцы быстрорастущего гибрида новогодней ели, которые достигают спелости за один год, или бычков, отведя часть земли под пастбище. Деревья выращиваются и продаются в партиях по 1000 штук. Требуется 1.5 га для выращивания одной партии деревьев и 4 га для вскармливания одного бычка. Лесничество может потратить только 200 ч. в год на свое побочное производство. Практика показывает, что требуется 20 ч. для культивации, подрезания, вырубки и пакетирования одной партии деревьев. Для ухода за одним бычком также требуется 20 ч. Лесничество имеет возможность израсходовать на эти цели 6 тыс. руб. Годовые издержки на одну партию деревьев выливаются в 150 руб. и 1,2 тыс. руб. на одного бычка. Уже заключен контракт на поставку 2 бычков. По сложившимся ценам, одна новогодняя ель принесет прибыль в 2,5 руб., один бычок - 5 тыс. руб.
Предположим, что x1 - количество откармливаемых бычков в год;x2 - количество выращиваемых партий быстрорастущих новогодних елей по 1000 шт. каждая в год.
- прибыль с продажи ели, - бычка.матрица затрат.
- удельные затраты на производство. - вид затрачиваемого ресурса, .Математическая модель в общем виде:
игде
- количество исходного ресурса.Математическая модель для нашей задачи:
1. Кофман, А. Методы и модели исследования операций М. : Мир Т. 3 : Целочисленное программирование 1977.
2. Костевич Л.С. Математическое программирование: Информ. технологии оптимальных решений. – Мн., Новое знание, 2003
3. Вентцель Е.С. Исследование операций: задачи, принципы, методология. – М.: Дрофа, 2004