Сколько сторон имеет выпуклый многоугольник, если все его внешние углы тупые?
Решение. Обозначим внешний угол многоугольника через а. По условию все внешние углы тупые, т. е. а > 90°. Так как сумма внешних углов выпуклого многоугольника равна 360°, то а • п — 360°. Отсюда следует, что п не более трех. А так как п — целое, то п = 3.
Сторона квадрата равна 7 см. Определите диаметр окружности, описанной около этого квадрата.
Решение. Квадрат называется вписанным в окружность, если все его вершины лежат на окружности. Из определения следует, что точка пересечения диагоналей квадрата совпадает с центром описанной около него окружности. Отсюда диаметр окружности совпадает с диагональю квадрата. Диагональ
квадрата 7 pi/2 см. Следовательно, и диаметр окружности равен 7 pi/2 см.
Докажите, что в равностороннем треугольнике расстояние от точки пересечения двух биссектрис до стороны в два раза меньше расстояния от этой же точки до вершины.
Дано: ААВС — равносторонний треугольник, DC и BF — биссектрисы, О — точка пересечения биссектрис DC и BF.
Доказать: ВО = 2DO.
Доказательство. Биссектриса угла равностороннего треугольника является одновременно его медианой и высотой. Отсюда следует, что в треугольнике BDO Z BDO = = 90°, a Z DBO = 30°. Следовательно, треугольник BDO — прямоугольный, и один из его углов равен 30°. Отсюда ВО = 2DO (по свойству прямоугольного треугольника, у которого один угол равен 30°).
Если точки А и В различны, то расстоянием между ними называется длина отрезка АВ. Если точки А и В совпадают, то расстояние между ними принимается равным нулю.
[П] Каковы бы ни были три точки, расстояние между любыми двумя из этих точек не больше суммы расстояний от них до третьей точки.
Даны две окружности с общим центром в точке О, АС и BD — диаметры этих окружностей. Докажите, что четырехугольник ABCD — параллелограмм.
Дано: О — центр концентрических окружностей, АС — диаметр большей окружности, BD — диаметр меньшей окружности.
Доказать: ABCD — параллелограмм.
Доказательство. Так как О — центр концентрических окружностей, то диаметры АС и CD пересекаются и точкой пересечения делятся пополам, значит, в силу признака параллелограмма ABCD — параллелограмм.
Дано:
. [П] Первый признак подобия треугольников: Если два угла одного треугольника равны
двум углам другого треугольника, то такие
треугольники подобны.
Второй признак подобия треугольников: Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то такие треугольники подобны.
Третий признак подобия треугольников: Если стороны одного треугольника пропорциональны сторонам другого треугольника, то такие треугольники подобны.
Прямоугольник вписан в окружность радиуса 5 см. Одна из его сторон равна 8 см. Найдите другие стороны прямоугольника.
На диаметре окружности построен равносторонний треугольник. Определите градусную меру дуг, на которые стороны треугольника делят полуокружность.