Смекни!
smekni.com

Ответы по геометрии для 9 класса (стр. 5 из 6)

49. Деление отрезка пополам с помощью циркуля и линейки.

Дано: отрезок АВ.

Построить точку О так, что АО = ОБ.

Построение (рис. 52).

Из точек В и А радиусом АВ проведем окружности и точки пересечения этих двух окружностей обозначим через С1 и С (постр. 2). Проведем прямую СХС и обозначим точку пересечения прямых CjC и п через О (постр. 3).

Докажем, что точка О является серединой отрезка АВ. Треугольники СхАС и СхВС равны по третьему признаку равенства треугольников. Поэтому AGO = BCO. Тогда треугольники AGO и ВСО равны по первому признаку равенства треугольников. Отсюда следует, что стороны АО и ВО равны. Следовательно, точка О является серединой отрезка АВ.

50. Теорема о средней линии треугольника.

[П] Средней линией треугольника называется отрезок, соединяющий середины двух его сторон.

Средняя линия треугольника, соединяющая середины двух данных сторон, параллельна третьей стороне и равна ее половине.

Дано: DE — средняя линия треугольника ABC.



Доказательство. Проведем через точку D прямую, параллельную стороне АВ. По теореме Фалеса она пересекает отрезок АС в его середине, т. е. содержит среднюю линию DE. Значит, средняя линия DE параллельна стороне АВ (рис. 53).

Проведем теперь среднюю линию DF. Она параллельна стороне АС. Четырехугольник AEDF — параллелограмм. По свойству параллелограмма ED = — AF, а так как AF = FB по теореме Фалеса, то ED = АВ. Теорема доказана.

51. Задача по теме «Ромб. Квадрат».


52. Задача по теме «Равнобедренный треугольник».

На боковых сторонах равнобедренного треугольника во внешнюю сторону построены равносторонние треугольники. Докажите, что отрезки, соединяющие вершины равносторонних треугольников (отличные от вершин равнобедренных треугольников) с серединой основания равнобедренного треугольника, равны.

53. Свойство параллелограмма (формулировки и примеры).

I. Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам.

II. В параллелограмме противолежащие стороны равны и противолежащие углы равны.

Примеры.

1. В параллелограмме ABCD диагональ BD равна 12 см, О — точка пересечения диагоналей параллелограмма. Чему равен отрезок DO (рис. 55)?

Решение. По свойству диагоналей параллелограмма

2. В параллелограмме ABCD постройте медиану A BCD, проходящую через вершину С.

Построение. Проведем диагональ АС. Она пересекает диагональ BD в точке О. Так как диагонали параллелограмма в точке пересечения делятся пополам, то ВО = OD, значит, СО — медиана ABCD.

3. В параллелограмме сумма двух углов равна 132°. Найдите градусную меру каждого из этих углов.

Решение. Два данных угла не могут быть прилежащими к одной стороне, так как в этом случае их сумма была бы равна 180°: Значит, эти углы противолежащие. По свойству противолежащих углов параллелограмма они равны и каждый из них равен 66°.

4. На рисунке 56 приведен фрагмент страницы тетради в косую линейку. Отрезок АВ равен 3 см, а наклонные линии образуют с горизонтальными



угол, равный 60°. Найдите стороны KL и NM и углы ячейки KLMN.

Решение. По определению параллелограмма все ячейки страницы тетради в косую линейку являются параллелограммами, так как все горизонтальные линии параллельны и все наклонные линии параллельны.

По свойству сторон параллелограмма АВ = DC (из параллелограмма ABCD), DC = KL (из параллелограмма DCLK), KL = NM (из параллелограмма KLMN).

Отсюда АВ = DC = KL = NM = 3 см. Углы KNM и KLM параллелограмма KLMN равны по свойству противолежащих углов параллелограмма и равны 60° по условию. Так как углы NKL и KNM — прилежащие к одной стороне параллелограмма, то

54. Теорема о внешнем угле треугольника.

Внешним углом треугольника при данной вершине называется угол, смежный с углом треугольника при этой вершине.

Чтобы не путать угол треугольника при данной вершине с внешним углом треугольника при этой же вершине, его иногда называют внутренним углом.

Внешний угол треугольника равен сумме двух внутренних углов треугольника, не смежных с ним.



Отсюда следует, что
, т. е. внешний угол при вершине равен сумме углов А и В, что и требовалось доказать.

Отсюда следует, что внешний угол треугольника больше любого внутреннего угла, не смежного с ним.

55. Задача по теме «Признаки равенства треугольников».


56. Задача по теме «Площадь».


57. Теорема о средней линии трапеции (формулировка и пример).

Средняя линия трапеции параллельна основаниям трапеции и равна их полусумме.

Пример.

58. Теорема о сумме углов выпуклого многоугольника.

Многоугольник называется выпуклым, если он

лежит в одной полуплоскости относительно любой прямой, содержащей его сторону.

Сумма углов выпуклого п-угольника равна 180° - (п - 2).

59. Задача по теме «Признаки равенства треугольников».


60. Задача по теме «Решение прямоугольных треугольников».


61. Формулы для радиусов вписанных и описанных окружностей правильного n-угольника (формулы и примеры).




62. Свойство диагоналей ромба.




Дано: ABCD — ромб, АС и BD — диагонали, О — точка пересечения диагоналей.

Доказать: AC BD, АС и BD — биссектрисы углов ромба.

Доказательство. Рассмотрим ромб ABCD (см. рис. 61). По свойству параллелограмма АО = ОС. Значит, в треугольнике ABC отрезок ВО является медианой. Так как ABCD — ромб, то АВ = ВС и треугольник ABC — равнобедренный. По свойству равнобедренного треугольника медиана, проведенная к его основанию, является биссектрисой и высотой. А это значит, что диагональ BD является биссектрисой угла В и перпендикулярна диагонали АС. Аналогично рассматривается AABD. Теорема доказана.

63. Задача по теме «Равнобедренный треугольник».


64. Задача по теме «Подобие треугольников».

65. Формулы для радиусов вписанных и описанных окружностей правильного треугольника, правильного четырехугольника, правильного шестиугольника (формулы и примеры).




Примеры.

1. Найдите радиус окружности, вписанной в правильный треугольник, если сторона треугольника равна 5 см.

Решение:


2. Радиус окружности, вписанной в квадрат, равен 1 см. Найдите радиус описанной окружности. Решение:





3. Радиус окружности, описанной около правильного шестиугольника, равен 7 см. Найдите сторону правильного шестиугольника.

Решение:

66. Свойство диагоналей прямоугольника.

Прямоугольник — это параллелограмм, у которого все углы прямые (рис. 62).

Диагонали прямоугольника равны.

Дано: ABCD — прямоугольник, АС и BD — диагонали.

Доказать: АС = BD.

Доказательство. Прямоугольные треугольники ACD и DBA равны (рис. 62), так как углы BAD и CDA — прямые, катет AD — общий, а катеты CD



и ВА равны как противолежащие стороны параллелограмма. Из равенства треугольников следует, что их гипотенузы равны, т. е. АС = BD, что и требовалось доказать.

67. Задача по теме «Равнобедренный треугольник».


68. Задача по теме «Параллельные прямые».


69. Первый признак равенства треугольников.

[П] Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.



70. Задача по теме «Площадь».

ABCD — трапеция. Докажите, что треугольники ABD и ACD имеют равные площади.

Дано: ABCD — трапеция.

Доказать:



Доказательство. Площадь треугольника равна половине произведения его основания на проведенную к нему высоту. Треугольники ABC и ACD имеют общее основание AD. Противоположные стороны четырехугольника KBCL параллельны, так что этот четырехугольник — параллелограмм. Поэтому противоположные стороны KB и CL равны, т. е. треугольники ABD ACD имеют равные высоты, проведенные к основанию AD. Следовательно,
, что и требовалось доказать.