Смекни!
smekni.com

Методы приближённого решения матричных игр (стр. 4 из 4)

Итерация 1. Так как e1 не равно 0, то процесс продолжается дальше. Теперь за начальные условия примем найденные значения векторов x1, c1. С их помощью вычисляем

, которые с большей точностью будут близки к истинным оптимальным стратегиям игрока 1.

1. Итак, пусть x1=(1/2, 1/2, 0), c1=(2, 3/2, 3/2).

Найдём множество индексов

, на которых игрок 1 может получить наименьший выигрыш:
, значит, J1={2,3}. Для этих индексов выигрыш равен 3/2. Это есть значение нижней оценки цены игры, т. е.
. Заметим, что
.

2. Далее найдём компоненты векторов

. Для этого рассмотрим подыгру
. В силу симметричности матрицы ее решением будет вектор (1/2, 1/2), т. е.
1/2a1+1/2a2+0a3=

=(4/2, 3/2, 3/2).

3. Вычислим коэффициент e2. Для этого решим подыгру (2´3):

. Стратегии игроков совпадают, поэтому e2=0. В этом случае цена игры совпадает со своим нижним значением, т. е.
. Возвращаемся к предыдущему шагу.

Итак, оптимальной стратегией игрока 1 является x*=x1=(1/2,1/2, 0) и

.Задача решена.

На первый взгляд алгоритм практически трудно реализовать, так как не известно, какого размера будет получена матрица для подыгры ГN. Но на самом деле с вероятностью 1 на каждом шаге придётся решать подыгру размера не больше чем m´2.[9]

Инженерами-программистами алгоритм был реализован на языке программирования Фортран-IV. Вычислительные эксперименты, проведённые на ЭЦВМ ЕС-1030, показали, что для игр размерности от 25´25 до 100´100, элементы, матрицы выигрышей которых были заполнены случайными числами, алгоритм позволяет найти искомое приближение за 100-1000 итераций, причём их число слабо зависит от размера матрицы. Для решения одной задачи машина затрачивает не дольше 8 минут. Ими же были разработаны различные модификации алгоритма. [9]

Приложение

В приложении приведена реализация итеративного метода Брауна-Робинсона решения матричных игр на языке программирования TurboPascal 7.0.

Пользователь вводит матрицу выигрышей размера m×n, где m≥3, n≥3.

Далее машина запрашивает информацию о том, кто из игроков начинает игру, какую стратегию он выбирает и количество итераций.

На дисплее выводится таблица разыгрываний игры за определённое число итераций.

program br;

uses crt;

const matr1:array[1..3,1..3] of byte=((0,4,2),

(3,1,0),

(1,2,3)); {Начальнаяматрица}

var

matr:array [1..10,1..10] ofinteger; {Матрица, введенная пользователем}

win_one:array[0..150,1..10] of word; {Массивдлявыигрышейигр.1}

win_two:array[0..150,1..10] of word; {Массивдлявыигрышейигр.2}

max,min:integer;

a,i,j,m,n,pl,st,st1,st2,kl:byte;

nol,otr:boolean;

functionigr_one:byte; {Функция определения следующего}

var a1,a2,max:integer; {ходадляигрока 1}

begin

max:=win_one[a,1];

igr_one:=1;

if pl=1 then a2:=m else a2:=n;

for a1:=1 to a2 do if win_one[a,a1]>max then begin

max:=win_one[a,a1];

igr_one:=a1;

end;

end;

function igr_two:byte; {Функция определения следующего}

var a1,a2,min:integer; {ходадляигрока 2}

begin

min:=win_two[a,1];

igr_two:=1;

if pl=1 then a2:=n else a2:=m;

for a1:=1 to a2 do if win_two[a,a1]<min then begin

min:=win_two[a,a1];

igr_two:=a1;

end;

end;

begin

clrscr;

writeln ('Итеративный метод Брауна-Робинсона.');

writeln('Матрица пользователя? (y/n)');

if (readkey='y')or(readkey='Y') then begin {Матрица из памяти или вводит пользователь}

write ('Введите размеры матрицы:');

readln(n,m); {Ввод количества строк и столбцов}

writeln('Введите ',n,' строки по ',m,' элементов:');

nol:=true;

otr:=false;

min:=0;

for j:=1 to n do for i:=1 to m do begin {Вводэлементовматрицы}

read(matr[i,j]);

ifmatr[i,j]<>0 thennol:=false; {Установка флага, что не все элементы равны 0}

ifmatr[i,j]<0 thenotr:=true; {Установка флага наличия отрицательных элементов}

ifmatr[i,j]<minthenmin:=matr[i,j];{Определение минимального элемента}

end

end else begin {Иначе берем матрицу из константы}

n:=3;m:=3;

for i:=1 to m do for j:=1 to n do matr[i,j]:=matr1[i,j];

end;

clrscr;

writeln ('Итеративный метод Брауна-Робинсона.');

if nol then writeln('Все элементы матрицы равны 0!') else begin {если установлен флаг нуля, то алгоритм не работает}

if otr then for j:=1 to n do for i:=1 to m do matr[i,j]:=matr[i,j]-min;{еслиестьотрицательныеэлементы,}

writeln('Начальная матрица:'); {Вывод окончательной матрицы}

for j:=1 to n do begin

for i:=1 to m do write(matr[i,j]:4);

writeln;

end;

write('Какой игрок начнет игру? '); {Вод стартовых значений}

readln(pl);

write('Какую стратегию выберет ',pl,' игрок? ');

readln(st);

write('Количество итераций? ');

readln(kl);

a:=1; {заглавие таблицы}

writeln(' № стр. выигрыш 1-го игр. стр. выигрыш 2-го игр. V W Y');

repeat

write(a:2,st:6,' '); {формирование таблицы: номер итерации, стратегия 1игр.}

if pl=2 then begin

for i:=1 to n do begin

win_one[a,i]:=matr[st,i]+win_one[a-1,i];{формированиематрицывыигрышей 1 игр.}

write(win_one[a,i]:4); {выводнаэкран}

end;

st1:=igr_one; {определение ответной стратегии 2 игр.}

gotoxy(32,wherey);

write(st1:10,' '); {вывод на экран}

for i:=1 to m do begin

win_two[a,i]:=matr[i,st1]+win_two[a-1,i]; {формированиематрицывыигрышей 2 игр.}

write(win_two[a,i]:4); {выводнаэкран}

end;

gotoxy(64,wherey);

write(win_one[a,st1]:4); {вывод наибольшего суммарного выигрыша 1 игр.}

st:=igr_two; {определение ответной стратегии 1 игр.}

write(win_two[a,st]:4); {вывод наибольшего суммарного выигрыша 2 игр.}

write((win_one[a,st1]+win_two[a,st])/(a*2):6:2);{приближенноезначениеценыигры}

end

else

begin

for i:=1 to m do begin

win_one[a,i]:=matr[i,st]+win_one[a-1,i];{формированиематрицывыигрышей 1 игр.}

write(win_one[a,i]:4);

end;

st1:=igr_one; {определение ответной стратегии 2 игр.}

gotoxy(32,wherey);

write(st1:10,' ');

for i:=1 to n do begin

win_two[a,i]:=matr[st1,i]+win_two[a-1,i];{формированиематрицывыигрышей 2 игр.}

write(win_two[a,i]:4);

end;

gotoxy(64,wherey);

write(win_one[a,st1]:4); {вывод наибольшего суммарного выигрыша 1 игр.}

st:=igr_two; {определение ответной стратегии 1 игр.}

write(win_two[a,st]:4); {вывод наибольшего суммарного выигрыша 2 игр.}

write((win_one[a,st1]+win_two[a,st])/(a*2):6:2);{приближенноезначениеценыигры}

end;

a:=a+1; {увеличение счетчика итераций}

writeln;

until a=kl+1;

end;

readln;

readln;

end.

Списоклитературы

1. Беленький В.З. Итеративные методы в теории игр и программировании. М.: «Наука», 1977

2. Блекуэлл Д.А. Теория игр и статистических решений. М., Изд. иностранной литературы, 1958

3. Вентцель Е.С. Элементы теории игр. М., Физматгиз, 1961

4. Вилкас Э.И. Оптимальность в играх и решениях. М.: «Наука», 1986

5. Воробьёв И.Н. Математическая теория игр. М.: «Знание», 1976

6. Давыдов Э.Г. Методы и модели теории антагонистических игр. М.: «Высшая школа», 1990

7. Дрешер М. Стратегические игры. Теория и приложения. М., 1964

8. Исследование операций в экономике / Н.Ш. Кремер, Б.А. Путко, И.М. Тришин, М.Н. Фридман. М.: «Банки и биржи», Юнити, 1997

9. Итеративный алгоритм решения матричных игр// Доклады Академии наук СССР, том 238, №3, 1978

10. Карлин С. Математические методы в теории игр, программировании и экономике. М.: «Мир», 1964

11. Крапивин В.Ф. Теоретико-игровые методы синтеза сложных систем в конфликтных ситуациях. М.: «Советское радио», 1972

12. Крушевский А.В. Теория игр: [Учебное пособие для вузов]. Киев: «Вища школа», 1977

13. Льюис Р., Райфа Х. Игры и решения. М.,1961

14. Морозов В.В., Старёв А.Г., Фёдоров В.В. Исследование операций в задачах и упражнениях. М.: «Высшая школа», 1996

15. Матричные игры. [Сборник переводов]. Под ред. Воробьёва И.Н. М., Физматгиз, 1961

16. Оуэн Г. Теория игр. [Учебное пособие]. М.: «Мир», 1973

17. Петросян Л.А., Зенкевич Н.А., Семен Е.А. Теория игр. М., 1989

18. Школьная энциклопедия математика. Ред. С. М. Никольский, М.: 1996, с. 380