Ответ: r = 3,3.
Осевым сечением цилиндра является квадрат, диагональ которого равна
см.Найдите площадь поверхности цилиндра.
Дано: цилиндр, АВСD − осевое сечение, АВ = АD, ВD =
см.Найти: Sпов.цил.
Решение:
Sбок. = 2πRh,
R =
= 0,5 м,Sбок. = 2πR × 2πR = (2πR)2 = 4π2 ×0,25 = π2
Ответ: Sбок. = π2 (м2).
Найдите радиус основания цилиндра наибольшего объема, вписанного в конус, радиус основания которого равен 3.
Дано: конус, цилиндр – вписан в конус, ОВ – радиус конуса, ОВ = 3.
Найти: r − радиус основания цилиндра.
Решение:
Обозначим через h и r высоту и радиус основания цилиндра, вписанного в конус с вершиной A. Рассмотрим осевое сечение конуса – равнобедренный треугольник ABC с высотой AO = H и основанием BC = 2· 3 = 6 (рис.2). Плоскость ABC пересекает цилиндр, вписанный в конус, по его осевому сечению – прямоугольнику KLMN, где точки K и L лежат соответственно на отрезках AB и AC, а точки M и N – на отрезке BC , причём KL = 2r , KN = LM = h . Пусть P – точка пересечения AO и KL . Треугольник APL подобен треугольнику AOC , поэтому
, илиоткуда
. Пусть V(r) – объем цилиндра, где 0 < r < 3 . Тогда .Найдем наибольшее значение функции V(r) на промежутке (0;3) .
V'(r) = H(2r - r2) = Hr(2 - r).
Промежутку (0;3) принадлежит единственный корень ( r = 2 ) полученного уравнения. Если 0 < r < 2 , то V'(r) > 0 . Поэтому на промежутке (0;2) функция V(r) возрастает. Если 2 < r < 3 , то V'(r) < 0 . Поэтому на промежутке (2;3) функция V(r) убывает. Значит, в точке r = 2 функция V(r) имеет максимум. Следовательно, радиус основания цилиндра наибольшего объема, вписанного в данный конус, равен 2.
Ответ: r = 2.
Развертка боковой поверхности цилиндра есть квадрат со стороной
. Найдите объем цилиндра.Дано: Цилиндр, квадрат – развертка боковой поверхности цилиндра, сторона квадрата =
.Найти: Vцил.