Рассмотрим линейную краевую задачу
(2.24)
(2.25)
,
где , ,и непрерывны на [a,b].
Разобьемотрезок [a, b]на nравных частей длины, или шага
.
Точки разбиения
,
называютсяузлами, а их совокупность – сеткой на отрезке [a,b]. Значения в узлах искомой функции и ее производных обозначим соответственно через
.
Введем обозначения
Заменим производные так называемыми односторонними конечно-разностными отношениями:
(2.26)
Формулы (2.26) приближенно выражают значения производных во внутренних точках интервала[a,b].
Для граничных точек положим
. (2.27)
Используя формулы (2.26), дифференциальное уравнение (2.24) при , (i=1, 2,..., n–1) приближенно можно заменить линейной системой уравнений
(2.28)
Кроме того, в силу формул(2.27) краевые условия (2.25) дополнительно дают еще два уравнения:
. (2.29)
Таким образом, получена линейная системаn+1уравнений сn+1неизвестными , представляющими собой значения искомой функции в узлах сетки. Система уравнений (2.28), (2.29), заменяющая приближенно дифференциальную краевую задачу(2.24), (2.25)обычно называется разностной схемой. Решить эту систему можно каким-либо общим численным методом. Однако схема (2.28), (2.29) имеет специфический вид и ее можно эффективно решить специальным методом, называемым методом прогонки. Специфичность системы заключается в том, что уравнения ее содержат три соседних неизвестных и матрица этой системы является трехдиагональной.
Преобразуем уравнения (2.28):
. (2.30)
Введя обозначения
получим
, (i=0, 1,..., n-2).(2.31)
Краевые условия по-прежнему запишем в виде
. (2.32)
Метод прогонки состоит в следующем.
Разрешим уравнение (2.31) относительно :
. (2.33)
Предположим, что с помощью полной системы (2.31) из уравнения исключен член, содержащий . Тогда уравнение (2.33) может быть записано в виде
, (2.34)
где и должны быть определены. Найдем формулы для этих коэффициентов. При i=0 из формулы (2.33) и краевых условий (2.32) следует, что
Исключая из этих двух уравнений , найдем
.
Выразим теперь отсюда :
(2.35)
Но, согласно формуле (2.34),
(2.36)
Сравнивая теперь (2.35) и (2.36), найдем, что
(2.37)
Пусть теперьi >0, то есть i=1, 2,..., n–2. Выражая по формуле (2.34), получим:
.
Подставляя это в формулу (2.33), будем иметь
.
Разрешая полученное уравнение относительно , находим
, или
. (2.38)
Отсюда, сравнивая формулы (2.34) и (2.38), получаем для коэффициентов и рекуррентные формулы:
(2.39)
Так как и уже определены по формулам (2.37), то, используя формулы (2.39), можно последовательно определить коэффициенты и до и включительно. Эти вычисления называются прямым ходом метода прогонки.
Из формулы (2.33) при i=n–2 и второго краевого условия (2.32) получаем
Разрешая эту систему относительно , будем иметь
. (2.40)
Теперь, используя (2.34) и первое краевое условие (2.32), мы можем последовательно найти . Это − обратный ход метода прогонки.
Итак, получаем следующую цепочку:
(2.41)
Для простейших краевых условий
формулы для и упрощаются. Полагая в этом случае из формул (2.37), (2.40), (2.41) будем иметь
Рассмотренный нами подход сводит линейную краевую задачу к системе линейных алгебраических уравнений. При этом возникает три вопроса.
1)Существует ли решение алгебраической системы типа (2.31)?
2)Как фактически находить это решение?
3)Сходится ли разностное решение к точному при стремлении шага сетки к 0?
Можно доказать, что если краевая задача имеет вид
причем р(x)>0, то решение системы (2.31), (2.32) существует и единственно. Фактическое отыскание решения можно провести, например, методом прогонки. На третий вопрос дает ответследующая
Теорема
Если и дважды непрерывно дифференцируемы, то разностное решение, соответствующее схеме с заменой