С другой стороны, сгруппировав его члены попарно, начиная со второго члена, получим также сходящийся ряд, но уже с суммой, равной единице:
Сходящиеся ряды обладают некоторыми свойствами, которые позволяют действовать с ними, как с конечными суммами. Так их можно умножать на числа, почленно складывать и вычитать. У них можно объединять в группы любые рядом стоящие слагаемые.
Теорема 2.1.(Необходимый признак сходимости ряда).
Если ряд (1.1) сходится, то его общий член
стремится к нулю при неограниченном возрастании n, т. е.
Доказательство теоремы следует из того, что
S – сумма ряда (1.1), то
Условие (2.1) является необходимым, но недостаточным условием для сходимости ряда. Т. е., если общий член ряда стремится к нулю при
Следствие (Достаточный признак расходимости ряда).
Если общий член ряда не стремится к нулю при
, то этот ряд расходится.
Пример 2.2. Исследовать на сходимость ряд
Для этого ряда
Следовательно, данный ряд расходится.
Рассмотренные выше расходящиеся ряды (1.6), (1.7) также являются таковыми в силу того, что для них не выполняется необходимый признак сходимости.
Свойство 2.1.Сходимость или расходимость ряда не изменится, если произвольным образом удалить из него, добавить к нему, переставить в нем конечное число членов (при этом для сходящегося ряда его сумма может измениться).
Доказательство свойства следует из того, что ряд (1.1) и любой его остаток
Свойство 2.2.Сходящийся ряд можно умножать на число, т. е., если ряд (1.1) сходится, имеет сумму S и c – некоторое число, тогда
Доказательство следует из того, что для конечных сумм справедливы равенства
Свойство 2.3.Сходящиеся ряды можно почленно складывать и вычитать, т. е. если ряды ,
сходятся,
то и ряд
сходится и его сумма равна т. е.
Доказательство следует из свойств предела конечных сумм, т. е.
Пример 2.3. Вычислить сумму ряда
Общий член ряда
Тогда исходный ряд можно представить в виде почленной разности двух сходящихся рядов геометрической прогрессии
Используя формулу (1.8), вычислим суммы соответствующих рядов геометрической прогрессии.
Для первого ряда
Для второго ряда
Окончательно имеем
3. Ряды с положительными членами. Признаки сходимости
Определить сходимость ряда (1.1) и найти его сумму в случае сходимости непосредственно по определению 1.1 как предела последовательности частичных сумм, весьма затруднительно. Поэтому существуют достаточные признаки определения сходится ряд или расходится. В случае его сходимости приближенным значением его суммы с любой степенью точности может служить сумма соответствующего числа первых n членов ряда.
Здесь будем рассматривать ряды (1.1) с положительными (неотрицательными) членами, т. е. ряды, для которых
Теорема 3.1.(признак сравнения)
Пусть даны два положительных ряда
и выполняются условия для всех n=1,2,…
Тогда: 1) из сходимости ряда (3.2) следует сходимость ряда (3.1);
2) из расходимости ряда (3.1) следует расходимость ряда (3.2).
Доказательство. 1. Пусть ряд (3.2) сходится и его сумма равна В. Последовательность частичных сумм ряда (3.1) является неубывающей ограниченной сверху числом В, т. е.
Тогда в силу свойств таких последовательностей следует, что она имеет конечный предел, т. е. ряд (3.1) сходится.
2. Пусть ряд (3.1) расходится. Тогда, если ряд (3.2) сходится, то в силу доказанного выше пункта 1 сходился бы и исходный ряд, что противоречит нашему условию. Следовательно ряд (3.2) также расходится.
Этот признак удобно применять к определению сходимости рядов, сравнивая их с рядами, сходимость которых уже известна.
Пример 3.1. Исследовать на сходимость ряд
Члены ряда положительны и меньше соответствующих членов сходящегося ряда геометрической прогрессии
Следовательно, по признаку сравнения исходный ряд также сходится.
Пример 3.2. Исследовать на сходимость ряд
Члены данного ряда положительны и больше соответствующих членов расходящегося гармонического ряда
Следовательно, по признаку сравнения исходный ряд расходится.
Теорема 3.2.(Предельный признак Даламбера[*]).
Пусть члены положительного ряда (1.1) таковы, что существует предел
Тогда: 1) при q < 1 ряд (1.1) сходится;
2) при q > 1 ряд (1.1) расходится;
3) при q = 1 о сходимости ряда (1.1) ничего сказать нельзя, необходимы дополнительные исследования.
Замечание: Ряд (1.1) будет расходиться и в том случае, когда
Пример 3.3. Исследовать на сходимость ряд
Применим предельный признак Даламбера.
В нашем случае
Тогда
Следовательно, исходный ряд сходится.
Пример 3.4. Исследовать на сходимость ряд
Применим предельный признак Даламбера: