Смекни!
smekni.com

Численные методы решения систем линейных алгебраических уравнений (стр. 4 из 5)

(9)

Естественно требовать, чтобы объем вычислений для ре­шения .системы Byk+1 = Fkбыл меньше, чем объем вы­числений для прямого решения системы Au=f

Точность итерационного метода (7) характеризуется величиной погрешности zh = ук — и, т. е. разностью между решением уравнения (7) и точным решением и исход­ной системы линейных алгебраических уравнений. Под­становка yk = zk+uв (2) приводит к однородному урав­нению для погрешности:

§2 ИТЕРАЦИОННЫЕ МЕТОДЫ РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ

2.1 Общие сведения

К численным методам линейной алгебры относятся численные методы решения систем линейных алгебраических уравнений. Методы решения СЛАУ разбиваются на две группы. К первой группе принадлежат так называемые точные или прямые методы - алгоритм, позволяющий получить решение системы за конечное число арифметических действий. Вторую группу составляют приближенные методы, в частности итерационные методы решения СЛАУ.

2.2.1 Описание метода

Рассмотрим СЛАУ вида

Ax = B, где А - матрица. (1)

A = {aij}i, j = 1…n

B = {bi}x = {xi}

Если эту систему удалось привести к виду x = Cx + D, то можно построить итерационную процедуру

xk = Cxk-1 + D

xk → x*, где х* - решение заданной системы.

В конечном варианте система будет имееть вид:

x1=c11x1+c12x2+c13x3+…c1nxn+d1

x2=c21x1+c22x2+c23x3+…c2nxn+d1

x3=c31x1+c32x2+c33x3+…c1nxn+d3

…………………………………………. .

xn=cn1x1+cn2x2+cn3x3+…cnnxn+dn

Условием сходимости для матрицы С выполняется, если сумма модулей коэффициентов меньше единицы по строкам или по столбцам, т.е.

, или
.

Необходимо, чтобы диагональные элементы матрицы А были ненулевыми.

Для преобразования системы можно выполнить следующие операции:

x1=a11-1 (c1-a12x2 - a13x3-… - a1nxn)

x2=a22-1 (c2-a21x2 - a23x3-… - a2nxn)

………………………. .

xn=ann-1 (cn-an1x2 - an3x3-… - an-1nxn-1)

В результате получим систему:

x1=0+ c12x2+ c13x3-…+ c1n-1xn-1+ c1nxn+d1

x2= c21x2+0 +c23x3+…+ c2n-1xn-1+ c2nxn+d2

………………………………………………………. .

xn= cn1x1+ cn2x2 +cn3x3+…+ cnn-1xn-1+ 0+dn

В ней на главной диагонали матрицы С находятся нулевые элементы, остальные элементы выражаются по формулам:

сij=-aij/aii, di=ci/aii (i,j=1,2,3…n, i<>j)

Итерационный процесс продолжается до тех пор, пока значения х1 (k), х2 (k), х3 (k) не станут близкими с заданной погрешностью к значениям х1 (k-1), х2 (k-1), х3 (k-1).

2.2.2 Решение СЛАУ методом простых итераций

Решить СЛАУ методом простых итераций с точностью

.

Для удобства преобразуем систему к виду:

Условие сходимости:

,

Принимаем приближение на 0-ом шаге:

,

,

На 1-м шаге выполняем следующее:

Подставляем принятые приближения в первоначальную систему уравнений

Смотрим не выполняется ли условие остановки итерационного процесса:

:

На 2-м шаге выполняем следующее:

Смотрим не выполняется ли условие остановки итерационного процесса

:

На 3-м шаге выполняем следующее:

Смотрим не выполняется ли условие остановки итерационного процесса

:

На 4-м шаге выполняем следующее:

Смотрим не выполняется ли условие остановки итерационного процесса

:

На 5-м шаге выполняем следующее:

Смотрим не выполняется ли условие остановки итерационного процесса:

:

На 6-м шаге выполняем следующее:

Смотрим не выполняется ли условие остановки итерационного процесса:

:

Необходимая точность достигнута на 6-й итерации. Таким образом, итерационный процесс можно прекратить [14].

2.3 Метод Зейделя

2.3.1 Описание метода

В этом методе результаты, полученные на k-том шаге, используются на этом же шаге. На (k+1) - й итерации компоненты приближения

вычисляются по формулам:

………………………………………….

Этот метод применим к система уравнений в виде Ax=B при условии, что диагональный элемент матрицы коэффициентов A по модулю должен быть больше, чем сумма модулей остальных элементов соответствующей строки (столбца).

Если данное условие выполнено, необходимо проследить, чтобы система была приведена к виду, удовлетворяющему решению методом простой итерации и выполнялось необходимое условие сходимости метода итераций:

, либо