Міністерство охорони здоров’я України
Житомирський фармацевтичний коледж
ім. Г.С. Протасевича
Реферат
на тему:
“Розкриття невизначеностей за правилом Лопіталя”
Роботу виконала
Студентка 211 групи
Піщук Олеся
Викладач:
Виговська В.Г.
Отриманий бал:
_____________
м. Житомир – 2006
План
І. Розкриття невизначеностей з використанням правила Лопіталя.
1) Правило Лопіталя.
а) Наслідок.
б) Приклад 1.
2) Розкриття невизначеностей виду: ∞-∞; 0∙∞; 1∞; 00; ∞0.
а) Приклад 2.
б) Приклад 3.
в) Приклад 4.
Список використаної літератури.
І. Розкриття невизначеностей з використанням правила Лопіталя.
Лопіталь де Гійом Франсуа (1661-2.02.1704 рр.). Французький математик, член Парижської АН, народився в Парижі, вивчав математику під керівництвом У. Бернуллі. Видав перший друкований підручник по диференціальному обчисленню – “Аналіз нескінченно малих” (1696р.). В підручнику є правило Лопіталя – правило знаходження межі дробу, чисельник і знаменник якого прямує до 0. Крім того, він створив курс аналітичної геометрії конічних перетинів. Йому також належить дослідження і розвиток за допомогою математичного аналізу декількох важких задач по геометрії і механіці, а також одне із рівнянь знаменитої задачі о браністохроні.
1. Правило Лопіталя.
Нехай виконані умови:
1. функції f(х) та g(х) визначені і диференційовані в колі точки х0;
2. частка цих функцій
3. існує
Тоді існує
а) Наслідок.
Нехай:
1. Визначені в колі точки х0 функції f(х), g(х) та їх похідні до n-го порядку включно;
2. Частки
3. Існує
б) Приклад 1.
Знайти:
Розв’язання:
Функції
Маємо:
2) Розкриття невизначеностей виду: ∞-∞; 0∙∞; 1∞; 00; ∞0.
Існують прийоми, що дозволяють зводити вказані невизначеності до невизначеностей вигляду
1. Нехай
За умовою
Якщо
Якщо
2. Нехай
В цьому випадку поступають так:
Під знаком останньої границі маємо невизначеність
3. Нехай
Позначимо
Отже, обчислення натурального логарифма границі
4. Невизначеності вигляду
а) Приклад 2.
Знайти границю
Розв’язання:
Функції
Використовуючи правило Лопіталя, одержимо:
б) Приклад 3.
Знайти границю
Розв’язання:
В цьому випадку маємо невизначеність вигляду
Отже,
в) Приклад 4.
Знайти границю
В цьому випадку маємо невизначеність вигляду
Чотири рази застосували правило Лопіталя.
Отже, маємо: