Смекни!
smekni.com

Линейно упорядоченное пространство ординальных чисел (стр. 1 из 9)

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ВЯТСКИЙ ГОСУДАРСТВЕННЫЙ ГУМАНИТАРНЫЙ УНИВЕРСИТЕТ

Математический факультет

Кафедра математического анализа и МПМ

Выпускная квалификационная работа

ЛИНЕЙНО УПОРЯДОЧЕННОЕ ПРОСТРАНСТВО ОРДИНАЛЬНЫХ ЧИСЕЛ

Выполнила студентка 5 курса

математического факультета Лоптева О. Н.

_____________________________/подпись/

Научный руководитель:

к.ф.-м.н., доц. Варанкина В. И.

_____________________________/подпись/

Рецензент:

к.ф.-м.н., доц. Здоровенко М. Ю.

_____________________________/подпись/

Допущена к защите в ГАК

Зав. кафедрой_______________________ Крутихина М. В.

«____»______________________________

Декан факультета____________________ Варанкина В. И.

«____»______________________________

КИРОВ, 2003

ОГЛАВЛЕНИЕ

Введение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Глава 1

Исходные определения

§1. Порядковые определения . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

§2. Топологические определения . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Глава 2

Линейно упорядоченное пространство ординальных чисел

§1. Вполне упорядоченные множества и их свойства . . . . . . . . . . . . . . . . . .8

§2. Конечные цепи и их порядковые типы . . . . . . . . . . . . . . . . . . . . . . . . . . 10

§3. Порядковый тип . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

§4. Свойства ординальных чисел . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

§5. Пространство ординальных чисел W(

1) и его свойства. . . . . . . . . . . .18

Список литературы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

ВВЕДЕНИЕ

Идеи топологии были высказаны ещё выдающимися математиками 19 века: Н. И. Лобачевским, Риманом, Пуанкаре, Кантором, Гильбертом и Бауэром. Однако общая топология, как её понимают сейчас, ведёт начало от Хаусдорфа («Теория множеств», 1914).

Истоки теории упорядоченных и частично упорядоченных алгебраических систем лежат в геометрии, функциональном анализе и алгебре.

Линейно упорядоченные пространства, в том числе и линейно упорядоченное пространство ординальных чисел, объединяют в себе две структуры: порядковую и топологическую. Систематического изложения теории пространства ординальных чисел не существует. Этим объясняется актуальность выбранной темы.

Целью дипломной работы является исследование пространства ординальных чисел, его порядковых и топологических свойств. В первой главе будут даны основные понятия теории множеств и общей топологии, а во второй главе будет введено понятие порядкового типа, установлены свойства порядковых чисел, а также проведено исследование пространства ординальных чисел, имеющее важное значение для данной работы. Будет доказана хаусдорфовость, нормальность, локальная компактность, счётная компактность, неметризуемость и некоторые другие свойства линейно упорядоченного пространства ординальных чисел.

ГЛАВА 1. Исходные определения и теоремы.

§1. ПОРЯДКОВЫЕ ОПРЕДЕЛЕНИЯ.

Определение 1.1. Упорядоченным множеством называется непустое множество Х вместе с заданным на нём бинарным отношением порядка

, которое:

рефлексивно: а

a;

транзитивно: a

b
c
a
c;

антисимметрично: a

b
a
a = b ( для любых a, b, c
X ).

Элементы упорядоченного множества называются сравнимыми, если

а < b, a = b или b < a.

Замечание: по определению будем считать, что a < b, если a

b и a
b.

Определение 1.2. Упорядоченное множество называется линейно упорядоченным, или цепью, если любые его два элемента сравнимы.

Определение 1.3. Элемент а упорядоченного множества Х называется наименьшим (наибольшим) элементом множества А

Х, если а
А
и а
х

(х

а) для любого х
А.

Определение 1.4. Элемент а упорядоченного множества Х называется минимальным (максимальным) элементом множества А

Х, если в А нет элементов, меньших (больших) а, то есть если х
а (а
х)
для некоторого х
,
то х = а.

Определение 1.5. Пусть А – непустое подмножество линейно упорядоченного множества Х. Элемент а из Х называется верхней (нижней) гранью множества А, если он больше (меньше) любого элемента из А.

Определение 1.6. Если множество А имеет хотя бы одну верхнюю (нижнюю) грань, то А называется ограниченным сверху (ограниченным снизу).

Определение 1.7. Множество А называется ограниченным, если оно ограничено и сверху и снизу.

Определение 1.8. Точной верхней гранью множества А называется наименьший элемент множества всех верхних граней множества А. Обозначается sup A.

Определение 1.9. Точной нижней гранью множества А называется наибольший элемент множества всех нижних граней множества А. Обозначается inf A.

Определение 1.10. Пусть <X,

> - линейно упорядоченное множество, содержащее, по крайней мере, два элемента. Для а, b
X, a < b положим

(a, b) = {x

X: a < x < b}. Такие множества будем называть интервалами в Х. Множество [a, b] = { x
X : a
x
b} называется отрезком в Х.

Определение 1.11. Упорядоченное множество называется вполне упорядоченным, если каждое его непустое подмножество имеет наименьший элемент.

Определение 1.12. Пусть М и М1 – упорядоченные множества и пусть f – взаимно однозначное отображение М на М1. Отображение сохраняет порядок, если из того, что a

b ( a, b
M
), следует, что f (a)
f (b) (в М1). Отображение f называется изоморфизмом упорядоченных множеств М и М1, если соотношение f (a)
f (b) выполнено в том и только в том случае, если a
b. При этом множества М и М1 называются изоморфными между собой.

§2. ТОПОЛОГИЧЕСКИЕ ОПРЕДЕЛЕНИЯ.

Определение 1.13. Топологическим пространством называется пара (Х,

), состоящая из множества Х и некоторого семейства
подмножеств множества Х, удовлетворяющая следующим условиям:

1) множество Х и Æ принадлежат

;

2) пересечение конечного числа множеств из

принадлежат
;