Смекни!
smekni.com

Формула полной вероятности и формула Бейеса Байеса и их применение (стр. 2 из 2)

Так как вызов на линию огня любого стрелка равновозможен, то

В результате опыта наблюдалось событие В - после произведенных выстрелов мишень не поражена. Условные вероятности этого события при сделанных гипотезах равны:

по формуле Байеса находим вероятность гипотезы

после опыта:

Задача 3. На трех станках-автоматах обрабатываются однотипные детали, поступающие после обработки на общий конвейер. Первый станок дает 2% брака, второй – 7%, третий – 10%. Производительность первого станка в 3 раза больше производительности второго, а третьего – в 2 раза меньше, чем второго.

а) Каков процент брака на конвейере?

б) Каковы доли деталей каждого станка среди бракованных деталей на конвейере?

Решение. Возьмем с конвейера наудачу одну деталь и рассмотрим событие А – деталь бракованная. Оно связано с гипотезами относительно того, где была обработана эта деталь:

– взятая наудачу деталь обработана на
-ом станке,
.

Условные вероятности (в условии задачи они даны в форме процентов):

Зависимости между производительностями станков означают следующее:

.

А так как гипотезы образуют полную группу, то

.

Решив полученную систему уравнений, найдем:

.

а) Полная вероятность того, что взятая наудачу с конвейера деталь – бракованная:

.

Другими словами, в массе деталей, сходящих с конвейера, брак составляет 4%.

б) Пусть известно, что взятая наудачу деталь – бракованная. Пользуясь формулой Байеса, найдем условные вероятности гипотез:

,

,

.

Таким образом, в общей массе бракованных деталей на конвейере доля первого станка составляет 33%, второго – 39%, третьего – 28%.

Задача 4.

В первой урне 2 белых и 6 черных шаров, во второй – 4 белых и 2 черных. Из первой урны наудачу переложили 2 шара во вторую, после чего из второй урны наудачу достали один шар.

а) Какова вероятность того, что этот шар белый?

б) Шар, взятый из второй урны, оказался белым. Какова вероятность того, что из первой урны во вторую были переложены 2 белых шара?

Решение.

Введем обозначения:

А – шар, извлеченный из второй урны, белый;

гипотезы

– из первой урны во вторую переложены 2 белых шара,

– переложены 2 разноцветных шара,

– переложены 2 черных шара.

Тогда

Вероятности гипотез

и условие вероятности
вычисляем по классической схеме:

Полученные результаты подставим в формулу полной вероятности:

б) Вероятность

находим по формуле Байеса:

4. Основные сферы применения формулы Байеса(Бейеса)

1)Математический инструмент в теории вероятностей.

2)В статистике – как обобщение предшествующего опыта. Предполагается, что нами накоплен опыт, позволяющий экспериментально оценить априорное распределение вероятностей. Далее мы верим в то, что рассматриваемый нами новый объект относится к той же группе. Это позволяет строить классификаторы, основанные на байесовской формуле.

3)В статистике - для сравнения разных моделей в случае, когда априорные распределения настолько нечетки, что вообще несущественны. Очень часто используется BIC (байесовский информационный критерий).

4)Описание умонастроения. Сторонники интерпретации вероятности события как меры субъективной уверенности в его возможности могут пересчитывать эти величины в процессе появления новых данных. Очевидно, что математика здесь может быть подобной мельнице перемалывающей труху: произвол в определении априорных вероятностей может быть опасным.

Заключение

Формула полной вероятности широко использовалась математиками при конкретных расчётах ещё в начале XVIII века, но впервые была сформулирована как одно из основных утверждений теории вероятностей Пьером-Симоном Лапласом лишь в конце того века. Она применяется, в частности, при нахождении среднего выходного уровня дефектности в задачах статистического обеспечения качества продукции.

Формула Байеса позволяет «переставить причину и следствие»: по известному факту события вычислить вероятность того, что оно было вызвано данной причиной.

События, отражающие действие «причин», в данном случае обычно называют гипотезами, так как они — предполагаемые события, повлекшие данное. Безусловную вероятность справедливости гипотезы называют априорной (насколько вероятна причина вообще), а условную — с учетом факта произошедшего события — апостериорной (насколько вероятна причина оказалась с учетом данных о событии).

Можно также уточнять вероятность гипотезы, учитывая другие имеющиеся данные (другие произошедшие события). Для учета каждого следующего события нужно в качестве априорной вероятности гипотезы подставлять ее апостериорную вероятность с предыдущего шага.

Литература

1. Вентцель Е.С. Теория вероятностей. - М, «Высшая школа» 2002

2. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. - М, «Высшая школа» 2004

3. Письменный Д.Т. Конспект лекций по теории вероятностей и математической статистике. – М, «Айрис-пресс» 2004 г.

4. Сайт: Численные методы и теория вероятностей. http://www.uchites.ru/

5. Гмурман В. Е. Теория вероятностей и математическая статистика, — М.: Высшее образование.2005.