8.14.
8.15.
8.16.
8.17.
8.18.
8.19.
8.20.
8.21.
8.22.
8.23.
8.24.
8.25.
8.26.
8.27.
8.28.
8.29.
8.30.
Задача 9. Найти первую и вторую производные от функции у(х), заданной неявно:
9.1.
9.2.9.3.
9.4.9.5.
9.6.9.7.
9.8.9.9.
9.10.9.11.
9.12.9.13.
9.14.9.15.
9.16.9.17.
9.18.9.19.
9.20.9.21.
9.22.9.23.
9.24.9.25.
9.26.9.27.
9.28.9.29.
9.30.Задача 10. Найти первую и вторую производные от функции у(х), заданной параметрически:
10.1.
10.2.10.3.
10.4.10.5.
10.6.10.7.
10.8.10.9.
10.10.10.11.
10.12.10.13.
10.14.10.15.
10.16.10.17.
10.18.10.19.
10.20.10.21.
10.22.10.23.
10.24.10.25.
10.26.10.27.
10.28.10.29.
10.30.Задача 11. Используя геометрический смысл производной, решить следующую задачу:
11.1 Доказать, что длина отрезка, отсекаемого на оси ординат касательной в любой точке кривой у=4х – х2, равна квадрату абсциссы точки касания.
11.2 Доказать, что длина отрезка, отсекаемого на оси ординат нормалью, проведенной в любой точке кривой у=1 – х2/4, равна расстоянию от точки касания до начала координат.
11.3 Через произвольную точку кривой ху = 4 проведена касательная. Доказать, что отрезок касательной, заключенный между осями координат, делится пополам в точке касания.
11.4 Через произвольную точку кривой ху = х+2 проведена касательная. Доказать, что касательная пересекает прямую у = 1 в точке с абсциссой, равной удвоенной абсциссе точки касания.
11.5 Доказать, что площадь треугольника, образованного касательной к кривой у = 2/(1 – х),ординатой точки касания и осью абсцисс равна 1.
11.6 Доказать, что длина отрезка, отсекаемого на оси ординат касательной в любой точке кривой у=3хlnx+5x, равна утроенной абсциссе точки касания.
11.7 Через произвольную точку кривой у = а х3 проведена касательная. Доказать, что абсцисса точки пересечения касательной с осью абсцисс равна 2/3 абсциссы точки касания.
11.8 Через произвольную точку кривой у=х2 + 2/х проведена касательная. Доказать, что площадь трапеции, ограниченной осями координат, касательной и перпендикуляром, опущенным из точки касания на ось абсцисс, равна 3.