для некоторого
, то . Пусть . Тогда и , что противоречие (2). Значит, Пусть и для некоторого . Поскольку и , то , что невозможно в силу (2). Этим завершается доказательство теоремы.Пусть --- группа и --- ее подгруппа Фиттинга. Тогда является сверхразрешимой в том и только том случае, когда , где и --- такие сверхразрешимые подгруппы взаимно простых порядков, что и каждая подгруппа группы простого порядка или порядка 4 наследственно -перестановочна с каждой подгруппой группы , и каждая подгруппа группы простого порядка или порядка 4 наследственно -перестановочна с каждой подгруппой группы .
Доказательство. Необходимость. Пусть
--- сверхразрешимая группа. Пусть --- минимальная нормальная подгруппа группы . Тогда для некоторого простого , . Пусть --- максимальная подгруппа группы такая, что . Тогда и перестановочна с каждой подгруппой группы .Достаточность. Предположим, что
--- произведение подгрупп и , где , --- сверхразрешимы подгруппы взаимно простых порядков, --- подгруппа Фиттинга группы , и каждая подгруппа группы простого порядка или порядка 4 наследственно -перестановочна с каждой подгруппой группы , и каждая подгруппа группы простого порядка или порядка 4 наследственно -перестановочна с каждой подгруппой группы . Предположим, что не является сверхразрешимой группой, и пусть --- контрпример минимального порядка. Доказательство разобьем на следующие этапы.(1) В группе имеется несверхразрешимая максимальная подгруппа.
Предположим, что каждая максимальная подгруппа группы
сверхразрешима. Тогда ввиду леммы , разрешима. Согласно леммы , для некоторого в группе имеется нормальная силовская -подгруппа , удовлетворяющая следующим условиям:(i)
свехразрешима и --- наименьшая нормальная подгруппа группы , факторгруппа по которой сверхразрешима;(ii) если
то ; если то экспонента подгруппы равна 2 или 4;(iii)
--- главный фактор группы .Допустим, что
. Тогда . Пусть и пусть --- такое простое число, что , --- силовская -подгруппа группы . Пусть --- такая холлова -подгруппа группы , что . Тогда . Поскольку , то содержится в некоторой максимальной подгруппе группы . Так как каждая максимальная подгруппа группы сверхразрешима, то сверхразрешима. Значит, в группе имеется такая нормальная подгруппа , что и поэтому , где . Следовательно, или . Для некоторого , мы имеем . Тогда по условию, . Поскольку субнормальна в и , то , и поэтому . Следовательно, --- циклическая группа. Так как --- сверхразрешимая группа, то сверхразрешима. Значит, --- сверхразрешимая группа. Это противоречие с выбором группы доказывает (1).