(4) --- силовская -подгруппа группы .
Допустим, что наше предположение не верно. Пусть
--- наибольший простой делитель порядка группы . Так как и согласно (2), . Пусть --- максимальная подгруппа группы . По условию для некоторых, , и . Согласно (3), и неединичные группы. Так как группы и нильпотентны, то и . Ввиду леммы , и . Отсюда следует, что . Ясно,что либо , либо . Допустим, что . Покажем, что --- сверхразрешимая группа. Подгруппы и нильпотентны и подгруппа имеет главный рядгде
. Пусть . Тогда . По условию, для некоторого , мы имеемПоскольку
и , то . Это означает, что каждая подгруппа -перестановочна с каждой подгруппой группы , для всех . Поскольку , то по выбору группы мы заключаем, что сверхразрешима. Пусть --- силовская -подгруппа группы . Тогда ввиду леммы , , и поэтому , противоречие. Пусть теперь, . Покажем, что группа сверхразрешима. Ясно, что и --- нильпотентные подгруппы и подгруппа имеет главный рядгде
. Пусть . Тогда . По условию, для некоторого , мы имеемПоскольку
и , то . Это означает, что каждая -перестановочна с каждой подгруппой группы , для всех . Поскольку , то по выбору группы мы заключаем, что сверхразрешима. Пусть --- силовская -подгруппа группы . Тогда ввиду леммы , , и поэтому , противоречие. Следовательно, (4) справедливо.(5) и .
Предположим, что
. Поскольку нильпотента, то -группа, и поэтому согласно (4), --- силовская -подгруппа группы . Ясно, что и . Тогда . Пусть --- такой элемент из , что . Тогда . Так как , то и поэтому , противоречие. Значит, .