Так как
, то группа не -нильпотентна, поэтому в ней существует -замкнутая подгруппа Шмидта . По лемме 3 подгруппа несверхразрешима а по условию леммы ее индекс примарен.Если
, то - силовская -подгруппа группы , и нормальна в по лемме 3.2 . Поэтому и - -группа.Пусть
. Тогда - циклическая силовская -подгруппа группы . Будем считать, что не -замкнута, т.е. не является силовской в подгруппой. Для максимальной в подгруппы индекс подгруппы , бипримарен, поэтому сверхразрешима. Так как , то нормальна в иТаким образом,
и группа порядка, .Теперь факторгруппа
обладает нормальной силовской -подгруппой порядка . Итак, , где - силовская -подгруппа в . Так как нормальна в , а в нет неединичных нормальных -подгрупп, то и изоморфна подгруппе группы автоморфизмов циклической группы порядка . Поэтому - циклическая группа порядка и делит .теоремы C. Пусть
- разрешимая недисперсивная группа, у которой все подгруппы непримарного индекса сверхразрешимы. По леммам 5 и 8 группа бипримарна. Пусть , где и - простые числа и . Если - примарная группа, то из лемм 9 и 10 следует, что - дисперсивная группа порядка .Пусть
- бипримарная группа. Так как группа не -нильпотентна, то в существует -замкнутая подгруппа Шмидта . Поскольку , то подгруппа несверхразрешима по лемме 3, поэтому имеет в примарный индекс. Если , то - циклическая силовская -подгруппа группы , и группа имеет единичную -длину. Поэтому -замкнута, а значит -замкнута и . Для максимальной подгруппы из подгруппа имеет в непримарный индекс, поэтому сверхразрешима, а поскольку , то нормальна вИз
-замкнутости следует, что нормальна в , поскольку - циклическая подгруппа, то нормальна в . Так как не нормальна в , то , и имеет порядок .