Централизатор
содержит и нормален в , поэтому и . Значит самоцентрализуема.Пусть
- -холловская подгруппа в . Тогда - максимальная в подгруппа и совпадает со своим нормализатором. Предположим, что существует неединичный элемент в такой, что не содержится в . Так как и содержится в , то и . Пусть . Тогда , а по теореме Машке в существует подгруппа такая, что и допустима относительно , т.е. . Но индекс подгруппы четен поэтому эта подгруппа сверхразрешима и . Теперь централизует всю силовскую подгруппу , противоречие.Следовательно,
содержится в для всех неединичных элементов из и - группа Фробениуса с ядром , см. , с.630.Пусть
- произвольный нечетный делитель порядка группы , и пусть - -холловская подгруппа из . Так как самоцентрализуема, то не 2-нильпотентна и в существует 2-замкнутая подгруппа Шмидта . Поскольку не 2-нильпотентна, то ее индекс нечетен и - элементарная абелева подгруппа порядка . Из свойств групп Шмидта следует, что - показатель 2 по модулю . Необходимость доказана.Обратно, пусть
- группа Фробениуса, ядро которой - минимальная нормальная в подгруппа порядка где - показатель 2 по каждому нечетному простому делителю порядка . Пусть - произвольная подгруппа из . Тогда либо , либо , либо , либо - группа Фробениуса с ядром . Если , то индекс нечетен. Если или , то 2-нильпотентна. Пусть - группа Фробениуса и не содержится в . Поскольку не 2-нильпотентна, то в существует 2-замкнутая подгруппа Шмидта , где - нормальная в силовская подгруппа порядка , а - циклическая -подгруппа. Так как - элементарная абелева, то из свойств группы Шмидта вытекает, что - показатель 2 по модулю , значит и , т.е. . Лемма доказана полностью.Следствие. Пусть
- разрешимая группа и . Тогда и только тогда , когда каждая подгруппа из четного индекса является 2-подгруппой или группой нечетного порядка.