Смекни!
smekni.com

Формирование понятия функции в курсе математики средней школы (стр. 1 из 9)

Министерство образования республики Беларусь

Учреждение образование «Гомельский Государственный университет им. Ф.Скорины »

Математический факультет

Кафедра математического анализа

Допущена к защите

Зав. кафедрой _______ Малинковский Ю.В.

«___» ___________ 2002г.

Формирование понятия функции в курсе математики средней школы

Дипломная работа

Исполнитель

студентка группы М-61 _________ Рыкунова Юлия Витальевна

Научный руководитель _________Гаврилюк Александр Владимирович

к. п.н., доцент

Рецензент _________ Лытко Александр Александрович

к. п.н., доцент

Гомель 2002


Содержание:

Введение

§1 Различные трактовки понятия функции в школьном курсе математики.

§2 Функция и задание ее аналитическим выражением.

§3 Область определения функции и область значений функции как принципиально важные понятия в определении функции.

§4 Важнейшие классы функций: четные, конечные периодические.

§5 Тестовые работы по теме «Числовые функции. Четные и нечетные функции. Периодические функции»

Заключение.

Введение

Функция – одно из фундаментальных понятий математики, а функциональная идея является одной из определяющих идей развития школьного курса математики.

Данная дипломная работа посвящена анализу изучения понятия функции в школьном курсе математики. Основная ее цель – выявить ключевые моменты в определении этого понятия, на которые необходимо обратить особое внимание школьников при изучении данной темы, для того, чтобы не допустить формального усвоения данного понятия. В существующей школьной литературе (исключение составляет учебник «Алгебра» 8-11 класс К.О. Ананченко, Н.Т. Воробьева, Г.Н. Петровского) преобладает традиционная методика в изложении понятия функции, которая приводит к тому, что в результате выпускник школы, давая стандартное определение функции, не может ответить на элементарные вопросы, относящиеся к этой теме. В частности, на вопрос: «Какая функция называется

?», правильный и полный ответ можно услышать очень редко.

Работа состоит из 5 параграфов, введения и заключения.

В § 1 дается анализ двух основных трактовок понятия функции, имеющихся в рекомендованной школьной литературе: так называемое классическое, ориентированное в основном на приложение математики в физике и технике и опирающееся на понятие «переменная величина», и современное (или теоретико - множественное), связанное с отказом от расплывчатого понятия переменной величины, которое позволяет значительно расширить понятие функции, так как рассматривает функции не только от «величин».

В § 2 рассматриваются вопросы, связанные со способами задания функции. Ключевым моментом этого параграфа является анализ аналитического способа задания функций, т.е. с помощью формулы. Важным в этом параграфа является исследование соотношения понятий «функция» и «формула».

В третьем параграфе дается ответ на важный вопрос: «Что значит задать функцию?» Здесь речь в большей степени идет о множестве определения и множестве значений функций и важности понимания того, что говорить о функции, информация об области, определения которой отсутствует, не корректно. Следует отметить, что непонимание этого факта часто присутствует в ответах даже подготовленных школьников.

В § 4 рассматриваются важные классы функций: четные, нечетные, периодические. Здесь определения данных классов подкреплены типичными примерами, в которых школьники, как правило, делают ошибки. Основное внимание уделено на то, что при определении таких функций кроме закона соответствия важно следить и за их областью определения.

В § 5 подготовлен комплект тестовых заданий по теме «Числовые функции. Сложная функция. Четные, нечетные функции. Периодические функции». При разработке данного комплекта тестовых заданий учитывались следующие моменты:

1) содержание заданий, вопросов охватывает наиболее принципиальные стороны и идеи темы;

2) в заданиях сделан акцент и на проверку навыков, и на выявление глубины освоения идейного содержания темы, проявлению математической эрудиции;

3) по усмотрению учителя тестовое задание может предлагаться ученикам не полностью, а частями.

4) задания обеспечивают возможность проведения итоговых занятий на заключительном этапе изучения понятия функции в школьном курсе математики.

Комплект тестовых заданий составлен в четырех вариантах и включает двенадцать вопросов. На каждый из них дается четыре ответа для выбора правильного из них. Вопросы в заданиях предлагаются в текстовой и графической формах. Задания рассчитаны на 45 минут работы школьника.

В процессе работы над дипломной работой была проанализирована основная литература по данной теме, список которой приводится в конце. Отметим, что среди этой литературы, на мой взгляд, учебник «Алгебра» 8-11 класс К.О. Ананченко, Н.Т. Воробьева, Г.Н. Петровского в наибольшей степени соответствует современным требованиям в подходе к освещению затронутых в нашей работе вопросов.

В заключении отметим, что в данной работе сделана попытка, опираясь на основные школьные учебники, собрать материал по данной теме, систематизировать его для того, чтобы выделить важные моменты при формировании понятия функции и препятствовать формальному усвоению понятий, сопутствующих определению функции. Большую роль в достижении этой цели играют разработанные тестовые задания, разбор типичных примеров, в которых учащиеся зачастую дают неправильные ответы.

Данная работа охватывает весь материал, связанный с понятием функции в школьном курсе и может быть использована при работе на уроках в обычных, профильных классах и на факультативных занятиях по математике.

§1. Различные трактовки понятия функции в школьном курсе математики

Функция – одно из фундаментальных понятий математики, а функциональная идея является одной из определенных идей развития школьного курса математики.

В существующих программах по математике как для школ (классов) с углубленным изучение математики, так и для базовых школ тема «Функции» занимает большой объем, к тому же очень много вопросов, касающихся функций, содержит программа по математике для поступающих в ВУЗы, поэтому особенно важен вопрос о трактовке этого фундаментального понятия математики.

Существуют различные трактовки общего понятия функции. В математике известны два основных направления: так называемое классическое, ориентированное в основном на приложение математики в физике и технике и опирающееся на понятие «переменная величина», и современное (или теоретико - множественное), связанное с отказом от расплывчатого понятия переменной величины, которое позволяет значительно расширить понятие функции, так как рассматривает функции не только от «величин».

Примером классического направления трактовки функции может служить определение функции: «зависимость одной переменной от другой, при которой каждому значению независимой переменной соответствует единственное значение зависимой переменной, называют функциональной зависимостью, илифункцией.

Независимую переменную иначе называют аргументом, а о зависимой переменной говорят, что она является функцией от такого аргумента. “ (Алгебра, учебник для седьмого класса общеобразовательных учреждений. Под редакцией С.А. Теляковского, М., 1997, стр. 44). Авторы учебника «Алгебра» для 9 класса общеобразовательных школ с углубленным изучением математики К.О. Ананченко, Н.Т. Воробьева, Г.Н. Петровского, Мн, 1995г., дают общее понятие функции в двух трактовках. С одной стороны они истолковывают функцию как «соответствие (правило) по которому для любого х (независимой переменной) из множества Х сопоставляется вполне определенное (единственное) у (зависимая переменная) из Y (стр.4)

С другой стороны, они определяют функцию как соответствие между множествами: если Х и Y – два произвольных множества, то говорят, что на Х определена функция f, принимающая значения из Y, если каждому элементу х

Х поставлен в соответствие единственный элемент y
Y “ /стр. 5/.

Это уже второе современное (теоретико – множественное) направление.

§2. Функция и задание её аналитическим выражением

Задать функцию – это значит указать область ее определения и соответствие (правило), при помощи которого по данному значению аргумента находятся соответствующие ему значения функции.

Из всех основных способов задания функции, таких, как аналитический, табличный, графический, алгоритмический или программный, особый интерес и значимость имеет задание функции при помощи некоторой формулы, некоторого аналитического выражения, позволяющего для любого значения аргумента из области определения Х, находить соответствующее значение функции путем вычислений.

Представление о формуле как о некоторой формуле, связывающей y и х, к сожалению, довольно часто встречается у школьников. Функция и формула - это разные «вещи» Одно дело-функция как отображение одного множества (в данном случае числового множества) на другое, другое дело – формула, представляющая собой лишь один из способов задания функции.

Чем же опасно отождествление функции с формулой, которая описывает функцию?

Во-первых, не всякая формула задает функцию.

Приведем несколько примеров:

у =

+
; y =
+
: