Обозначим через
- класс всех конечных абелевых групп. Ввиду теоремыТеорема. Пусть - такой набор конгруэнций -алгебры A, что . Пусть
прямое произведение факторалгебр иТогда
- мономорфизм алгебры в алгебру и входит подпрямо в ., класс является формацией. Обычно вместо пишут . Подгруппа называется коммутантом группы . В теории групп хорошо известно, что если - конечная -группа, то . Легко проверить, что если , тоТеорема 20.8. Пусть - конечное многообразие локально конечных групп, причем каждая группа из либо счетна, либо конечна. Тогда в том и только в том случае решетка является цепью, когда существует такое простое число , что каждая группа в является элементарно абелевой -группой.
Доказательство. Мы сначала предположим, что каждая группа в
является элементарно абелевой -группой. Тогда для каждого кардинального числа , мы полагаем (см. пример 20.2). Понятно, что влечет, что . Для доказательства того, что является цепью нам необходимо только показать, что для любого подгруппового функтора со свойством найдется кардинальное число такое, чтоПредположим, что
для всех кардинальных чисел . Тогда . Поскольку , то найдется группа такая, что для некоторой ее подгруппы мы имеем . Пусть . Поскольку , найдется группа такая, что для некоторой ее подгруппы мы имеем . По лемме 20.6, мы видим, что для всех подгрупп из , удовлетворяющих условию , мы имеем . Следовательно, . Используя лемму 20.7, мы видим, что имеется подгруппа в группе такая, чтоНо
, и поэтому . Если - канонический эпиморфизм, который отображает на , то , и поэтому . Это противоречие показывает, что для некоторого кардинального числа имеем место .Так как
и так как каждая группа в - либо конечна, либо счетна, то найдется натуральное число такое, что . Пусть - наименьшее натуральное число такое, что . Мы покажем, что . Предположим, что и пусть - группа из такая, что . В этом случае пусть . Тогда . Теперь, по выбору числа , мы имеем . Это означает, что найдется группа такая, что для некоторой подгруппы из с . Пусть - подгруппа в такая, что и . Тогда . Так как , мы имеем , и поэтому . Но тогда , и поэтому , противоречие. Следовательно Значит, .