Класс групп называется гомоморфом, если он содержит все гомоморфные образы всех своих групп. Гомоморф конечных групп
называется формацией, если каждая конечная группа обладает наименьшей по включению нормальной подгруппой (обозначаемой символом ) со свойством .Лемма 3.1 Пусть - формация, . Тогда
Доказательство. Пусть
. ТогдаОтсюда следует, что
. С другой стороны, поскольку - гомоморф, тоОткуда получаем
. Из и следует равенство .Лемма доказана.
Пример 10. Пусть
- некоторый класс конечных групп и - формация. Пусть для любой группыПокажем, что
- подгрупповой - функтор.Действительно, пусть
и . Тогда , и поэтому, согласно лемме 3.1, мы имеемСледовательно,
. Аналогично, если , то . Следовательно, - подгрупповой -функтор. Для обозначения такого функтора мы применяем запись .Пример 11. Для каждой группы
через обозначим совокупность всех абнормальных максимальных подгрупп из . Понятно, что - подгрупповой функтор. Для обозначения такого функтора мы будем применять запись .Аспект применения подгупповых функторов состоит в сопоставлении группе некоторой решетки подгупповых функторов свойства которой тесно связаны со свойствами самой группы. Это позволяет использовать строение группы в зависимости от условий налогаемых на соответствующую решетку подгупповых функторов.
Следует отметить также, что используя понятие подгуппового функтора можно строить новые типы решеток, что указывает на полезность этого понятия и для теории решеток.
Пусть
- некоторый класс групп. Будем говорить, что - ограниченный класс, если найдется такое кардинальное число , что для всех имеет место . Везде в дальнейшем мы предполагаем, что - некоторый ограниченный класс групп.Обозначим через,
множество всех подгрупповых -функторов, а через - множество всех замкнутых подгрупповых -функторов. На множестве введем частичный порядок , полагая, что имеет место тогда и только тогда, когда для любой группы справедливо .Для произвольной совокупности подгрупповых
-функторов определим их пересечение для любой группы . Понятно, что - нижняя грань для в . Мы видим, что - полная решетка с нулем и единицей . Понятно, что функтор , где для всех , является верхней гранью для в .Заметим, что если
- произвольный набор замкнутых подгрупповых -функторов, то, очевидно, - замкнутый подгрупповой -функтор. А поскольку замкнутым является и функтор , мы видим, что также является полной решеткой.Оказывается, что свойства таких решеток тесно связаны со свойствами групп, входящих в
. Отметим, например, что если содержится в классе конечных групп, то решетка является цепью тогда и только тогда, когда для некоторого простого числа класс состоит из элементарно-абелевых -групп. С другой стороны, решетка является цепью тогда и только тогда, когда все группы из являются -группами. Покажем, что в общем случае не является подрешеткой в . Для этого достаточно установить, что если - класс всех конечных групп и , , где и - различные простые числа, то функтор не является замкнутым. Пусть , где - группа порядка , a - группа порядка . Понятно, что и . Таким образом, если бы функтор был бы замкнутым, то мы бы имели Но, как нетрудно заметить, во множество входят лишь такие подгруппы из для которых имеет место одно из двух: или . Это означает, что . Следовательно, функтор не является замкнутым.