Министерство образования Республики Беларусь
Учреждение образования
"Гомельский государственный университет
им. Ф. Скорины"
Математический факультет
Курсовая работа
Элементарное изложение отдельных фрагментов теории подгрупповых функторов
Исполнитель:
Студентка группы М-42
Ларченко А.Ю.
Научный руководитель:
Канд. физ-мат. наук, доцент
Зверева Т.Е.
Гомель 2006
Содержание
1. Общие определения и обозначения
3. Определения и основные примеры подгрупповых функторов
4. Решетки подгрупповых функторов
5. Классы групп с заданными решетками подгрупповых функторов
Список использованных источников
Согласно теореме о соответствии между подгруппами основной группы, содержащие нормальную подгруппу
и подгруппами из факторуппы существует взаимнооднозначное соответствие, при котором нормальным подгруппам соответствуют нормальные подгруппы, субнормальным подгруппам соответствуют субнормальные и т.д.Этот факт лежит в основе следующего определения, введеного в монографии А.Н. Скибы "Алгебра формаций." (Мн.: Беларуская навука, 1997).
Пусть
некоторый класс групп. Составим с каждой группой некоторую систему ее подгрупп . Будем говорить, что - подгрупповой -функтор или подгрупповой функтор на , если выполняются следующие условия:1)
для всех ;2) для любого эпиморфизма
, где А, и для любых групп и имеет место иЗначение этого понятия связано прежде всего с тем, что подгрупповой функтор выделяет в группе те системы подгрупп, которые инвариантны относительно гомоморфизма и поэтому удобны при проведении индуктивных рассуждений.
Целью данной дипломной работы является элементарное изложение отдельных фрагментов теории подгрупповых функтороф, доступное для понимания в рамках специальных курсов математических факультетов.
Дипломная работа состоит из введения, общей части, включающей 5 параграфов, заключения и списка используемой литературы.
В первом параграфе приводятся общие определения и обозначения.
Во втором параграфе даются те известные результаты теории групп, которые используются в основном тексте дипломной работы.
Третий параграф посвящен изучению основных понятий подгрупповых функторов и рассмотрению примеров. Здесь из различных источников собраны и систематизированы основные определения и примеры подгрупповых функторов.
В параграфе четыре систематизирован теоретический материал по теме "Решетки подгрупповых функторов".
Параграф пять изучает свойства конечных групп в зависимости от свойств соответствующих решеток подгрупповых функторов.
Пусть
- группа. Тогда: - порядок группы ; - порядок элемента группы ; - коммутант группы , т.е. подгруппа, порожденная коммутаторами всех элементов группы ; - является подгруппой группы ; - является собственной подгруппой группы ; - является максимальной подгруппой группы ; - является нормальной подгруппой группы ; - является субнормальной подгруппой группы ; - является минимальной нормальной подгруппой группы ; - факторгруппа группы по подгруппе ; - индекс подгруппы в группе ; - нормализатор подгруппы в группе ;Если
и - подгруппы группы , то: - и изоморфны.Пусть
- группа, и , тогда: - правый смежный класс, - левый смежный класс;