Если существует антипростое число вида
Доказательство:
Данное утверждение равносильно задаче о существовании трёх подряд идущих антиростых чисел. Саму задачу решить сложно. Но, возможно, проще окажется задача о существовании антипростого числа вида
Заметим, что из тройки анипростых чисел (n2, n2+1, n2+2), в которой n2 и n2+2 являются антипростыми, можно получить числа
Но с помощью данного алгоритма нельзя получить антипростое число вида
1.2 Исследование количества антипростых чисел среди натуральных чисел
Будем исследовать количество антипростых чисел среди натуральных чисел в следующем смысле.
Необходимо попытаться найти или оценить количество антипростых чисел на различных отрезках (например, от 1 до 1000, от 1 до 1000000, от 1 до М (для произвольных натуральных значений М), от 1000 до 1000000 и т.п.), получить какие-либо общие закономерности.
Обозначим через p(т) количество антипростых чисел среди всех натуральных чисел от 1 до т.
Обозначим через p(k, т) количество антипростых чисел среди всех натуральных чисел от k до т.
Для оценки количества антипростых чисел на различных отрезках была разработана программа на Паскале, которая находит антипростые числа (см Приложение Б).
Из таблицы (см Приложение А), которую выводит программа, несложно подсчитать количество антипростых чисел для различных заданных отрезков. Например, от 1 до 1000 имеется 53 антипростых числа, от 1001 до 2000 – 24, от 2001 до 3000 – 18, от 3001 до 4000 – 19, от 4001 до 5000 – 13, от 5001 до 6000 – 13, от 6001 до 7000 – 12, от 7001 до 8000 – 11, от 8001 до 9000 – 11, от 9001 до 10 000 – 10 и т.д.
Но чтобы увидеть некоторую закономерность, попытаемся рассуждать, как и с простыми числами.
Хорошо известен постулат Бертрана [3, 4, 5, 6]: для любого натурального n
Для антипростых чисел заметим нечто похожее.
На отрезке [n; n+2∙[
По аналогии докажем что на отрезке [n; n+2∙[
Рассуждая аналогично, с учетом
Заметим также, что аналог гипотезы Лежандра [3] о том, что для любого n ≥ 2 найдётся простое число в интервале [n2; (n+1)2], для антипростых чисел выполняется. Ведь любой квадрат сам по себе уже антипростое число.
Для оценки количества чисел на отрезке от 1 до n построим график, на котором по оси Ox будем откладывать числа от 1 до 1 500 000, а по оси Oy – значение функции p(n), т.е. количество антипростых чисел на отрезке от [1; n] (см рис. 1).
Рисунок 1 – График функции p(n)
Сравним график на рис. 1 с графиком функции
Рисунок 2 – График функции
Для сравнения на рисунке 3 представлены одновременно графики функций p(n) и
Рисунок 3 – Сравнение графиков функций p(n) и
1.3 Исследование частоты встречаемости антипростых чисел среди натуральных чисел
Будем исследовать частоту встречаемости антипростых чисел среди натуральных чисел в следующем смысле. Необходимо исследовать свойства частоты встречаемости антипростых чисел на отрезках длины т, расположенных в ряду натуральных чисел от 1 до 1000000 и др. и получить какие-либо общие закономерности. Назовем частотой встречаемости антипростых чисел на отрезке [1, т] число t(т) = p(т)/т. Аналогично t(k, т) = p(k, т)/(т – k +1) – частота встречаемости антипростых чисел на отрезке [k, т]. Для оценки частоты встречаемости антипростых чисел на отрезке от 1 до m построим графики функций t(т) = p(т)/т (см рис. 4).
Рисунок 4 – График функции
Изучив график частоты t(т) = p(т)/т встречаемости антипростых чисел на отрезке от 1 до m, получим, что при малых значениях m он колеблется, то возрастая, то убывая (максимумы при антипростых m), но достигнув своего наибольшего значения
На рисунке 5 представлен графики функций t(т) и y(x)=