Раздел 1. Теория случайных чисел.
Все события делятся на детерминированные, случайные и неопределенные.
Если событие наступает в эксперименте всегда, оно называется достоверным, если никогда – невозможным. Это детерминированные события.
Статистическое определение вероятности: Если в опыте, повторяющемся n раз, событие появляется mA раз, тогда относительная частота наступления события:
. Р(А) – вероятность наступления события А.Для достоверного события W: Р(W)=1. Для невозможного события Æ: Р(Æ)=0.
0 £ P(A) £ 1, т.к. 0£mA£n - 0 £ hn(A) £ 1
W mA=n hn(A)=1
Æ mA=0 hn(A)=0
Все мыслимые взаимоисключающие исходы опыта называются элементарными событиями. Наряду с ними можно наблюдать более сложные события – комбинации элементарных.
Несколько событий в данном опыте называются равновозможными, если появление одного из них не более возможно, чем другого.
Классическое определение вероятности: Если n-общее число элементарных событий и все они равновозможные, то вероятность события А:
,где mA- число исходов, благоприятствующих появлению события А.
Раздел 2. Сложные события.
Теория сложных событий позволяет по вероятностям простых событий определять вероятности сложных. Она базируется на теоремах сложения и умножения вероятностей.
1) Суммой (объединением) двух событий А и В называется новое событие А+В, заключающееся в проявлении хотя бы одного из этих событий.
2) Произведением (пересечением) двух событий А и В называется новое событие АВ, заключающееся в одновременном проявлении обоих событий. А*В=АВ, АА=А, АВА=АВ.
3) Событие А влечет за собой появление события В, если в результате наступления события А всякий раз наступает событие В. АÌВ
А=В: АÌВ, ВÌА
Два события называются несовместными, если появление одного из них исключает возможность появления другого.
Если события несовместны, то АВ=Æ.
События А1, А2, …Аn образуют полную группу событий в данном опыте, если они являются несовместными и одно из них обязательно происходит:
AiAj=Æ (i¹j, i,j=1,2…n)
A1+A2+…+An=W
- событие противоположное событию А, если оно состоит в не появлении события А.
А и - полная группа событий, т.к. А+
=W, А =Æ.Теорема сложения вероятностей.
Вероятность суммы несовместных событий равна сумме вероятностей событий:
Р(А+В+С+…) = Р(А) + Р(В) + Р(С) +…
Следствие.Если события A1+A2+…+An - полная группа событий, то сумма их вероятностей равна 1.
P(A+ ) = P(A) + P(
) = 1Вероятность наступления двух совместных событий равна:
Р(А+В) = Р(А) + Р(В) - Р(АВ)
Р(А+В+С) = Р(А) + Р(В) + Р(С) – Р(АВ) – Р(АС) – Р(ВС) – Р(АВС)
Теорема. Если АÌВ, то Р(А) £ Р(В).
В=В1+В2 (В1=А) Р(В)=Р(В1) + Р(В2)= Р(А) + Р(В2)
Теорема умножения вероятностей. Условные вероятности.
Опыт повторяется n раз, mB раз наступает событие В, mАВ раз наряду с событием В наступает событие А.
hn(B) =
hn(AB) =Рассмотрим относительную частоту наступления события А, когда событие В уже наступило:
- условная вероятность события А по событию В – вероятность события А, когда событие В уже наступило.Свойства условных вероятностей.
Свойства условных вероятностей аналогичны свойствам безусловных вероятностей.
1. 0 £ Р(А/В) £ 1, т.к.
; АВ Ì В, Р(АВ) £ Р(В)2. Р(А/А)=1
3. ВÌА, - Р(А/В)=1
4.
5. Р[(A+C)/B] = Р(А/В) + Р(C/В) – Если события А и С несовместны
Р[(A+C)/B] = Р(А/В) + Р(C/В) - Р(АC/В) – Если события А и С совместны
Теорема. Вероятность произведения двух событий равна произведению вероятности одного события на условную вероятность другого.
Свойства независимых событий.
Если события А и В независимы, то независимы и каждая из пар: А и В, А и
, и В, .Если события Н1, Н2, …Нn независимы, то заменяя любые из них на противоположные, вновь получаем независимые события.
Формула полной вероятности.
Вероятность события В, которое может произойти совместно только с одним из событий Н1, Н2, …Нn , образующих полную группу событий, вычисляется по формуле:
События А1, А2, …Аn называют гипотезами.
Теорема гипотез (формула Байеса).
Если до опыта вероятности гипотез были Р(Н1), Р(Н2)…Р(НN), а в результате опыта произошло событие А, то условные вероятности гипотез находятся по формуле:
Пример. На трех технологических линиях изготавливаются микросхемы. Найти: 1) вероятность того, что случайно выбранное изделие оказывается бракованным; 2) вероятность того, что если изделие дефектно, то оно изготовлено на 1 линии.
№ линии | Количество изготавливаемых микросхем | Вероятность брака |
1 | 25% | 5%; |
2 | 35% | 4% |
3 | 40% | 2% |
Рассмотрим события: Н1, Н2,…Нi,…,НN (полная группа событий)– изделие изготавливается i линией; А{изделие с браком}.
1) Р(А)=0,25*0,05+0,35*0,04+0,4*002=0,0345=3,45%
2)
Схема последовательных испытаний Бернулли.
Проводится серия из n испытаний, в каждом из которых с вероятностью р может произойти событие А, с вероятностью q=1-р событие
.Вероятность наступления события А не зависит от числа испытаний n и результатов других испытаний.
Такая схема испытаний с двумя исходами (событие А наступило либо не наступило) называется схемой последовательных испытаний Бернулли.
Пусть при n испытаниях событие А наступило k раз, (n-k) раз событие
. - число различных комбинаций события АВероятность каждой отдельной комбинации:
Вероятность того, что в серии из n испытаний событие А, вероятность которого равна р, появится k раз:
- условие нормировки. Пример. Вероятность изготовления нестандартной детали равна р=0,25, q=0.75. Построить многоугольник распределения вероятностей числа нестандартных деталей среди 8 изготовленных.N=8 p=0.25 q=0.75
Если k0 – наивероятнейшее число, то оно находится в пределах:
np-q £ k0£ np+q
Предельные теоремы в схеме Бернулли.